نوع مقاله : مقاله پژوهشی

نویسندگان

توانیر

چکیده

پیش‌بینی نوسانات قیمت علاقه بسیاری از اندیشمندان در بازارهای مختلف نظیر بازار سهام و بازار کالا را به خود معطوف ساخته است. در سال‌های اخیر، برق نیز همانند یک کالا در بازارهای متعددی مورد معامله قرار گرفته است. از این رو، کشورهای زیادی در سر تا سر دنیا به دنبال اصلاح ساختار فرآیندها با سرعت و اهداف متفاوت در بخش انرژی هستند. افزایش رقابت در سطح عمده فروشی، معرفی قراردادهای مشتقات، معاملات معاوضه‌ای و عرضه برق در بازار بورس و فرابورس الزامات و نیازمندی‌های جدیدی را در این عرصه به وجود آورده است. در بین کشورهای مختلف ایران استثنای بر این قاعده نبوده و انجام معاملات در حوزه برق در کنار سایر کالاها یکی از فرایندهای در حال گسترش است. تحولات کنونی در بازار برق، ضرورت انجام مطالعه بر روی نوسانات قیمت و حجم معاملات، به منظور انجام اصلاحات ساختاری و هدایت این فرایندها در مسیری هدفمند را می‌رساند. مطالعه حاضر در نظر دارد با اجرای مدل‌ خودرگرسیون میانگین متحرک (ARMAX) با مدل خودرگرسیون میانگین شرطی تعمیم یافته (GARCH)، برترین مدل برای برازش بازده و نوسانات قیمت‌های روزانه بازار برق در بازه زمانی 1393-1391 را معرفی نماید. بنابراین، مدل‌ ARMAX در ترکیب با مدل‌ GARCH، EGARCH ،GJR-GARCH ، و توزیع‌های Gaussian، Student-t، Generalized Error، مقایسه خواهد شد.

کلیدواژه‌ها

عنوان مقاله [English]

studying the Iranian Electricity Market Price with an ARMAX-GARCH Mode

چکیده [English]

Predicting price volatility has been the interest of many scholars in different markets such as stock and commodity market. Electricity like other commodities has been traded in the market in recent years. Hence, a large number of countries around the world have recently started restructuring processes in their energy sectors. However, the pace and aim of the improvements varies across countries. With the introduction of competitive wholesale electricity markets, and power derivative contracts, both exchange-traded and over the counter (OTC), providing a number of different contract provisions to meet the needs of the electricity market participants. Among all countries, Iran is not an exception for the rule. Trading electricity along other commodities in the exchange market is a new progress for this market. These changes arises this necessity to study the nature of price volatilities so that the restructuring development and adopted actions would be done in a correct and meaningful way.
This study attempts to study the price volatilities in the Iranian electricity market by an ARMAX and GARCH type model and introduce the best simulation for the period of March 2012 to March 2014. Therefore, ARMAX model in a combination with GARCH, GJR-GARCH, and EGARCH type will be compared along with Gaussian, Generalize Error, and Student-t distribution.

کلیدواژه‌ها [English]

  • ARMAX Model
  • GARCH Model
  • Variance Distribution
  • Fitted Model
  • Electricity Price
ابراهیمی، نادعلی و شهرام جدید. (1387). پیش بینی قیمت برق روز بعد با استفاده از مدل ARIMA و Wavelet-ARIMA. دانشگاه علم و صنعت ایران، دانشکده مهندسی برق.## راعی، رضا، شاپور محمدی و علیرضا سارنج. (1393). پویایی­های بورس اوراق بهادار تهران با استفاده از مدل گارچ نمایی در میانگین سوئیچینگ مارکوف. مجله تحقیقات مالی، 37: 98-77. ##سجاد، رسول و امیر حسین فراهانی راد. (1392). مدلسازی عدم تقارن و تغییرساختاری سری­های زمانی مالی با استفاده از فرایندهای تغییر رژیم مارکوف. مجله مهندسی مالی و مدیریت اوراق بهادار، 17: 101-87. ##شایقی، حسین و علی قاسمی. (1394). پیش‌بینی قیمت روزانه برق با شبکه عصبی بهبود یافته مبتنی بر تبدیل موجک و روش آشوبناک جستجوی گرانشی. مجله مهندسی برق دانشگاه تبریز، 45: 117-105. ##شجاعی، عبدالناصر، محسن خضری و تورج بیگی. (1390). بررسی تأثیر شوک­های بازار ارز بر بورس اوراق بهادار تهران با استفاده از مدل­های تغییر رژیم مارکوف. فصلنامه اقتصاد کاربردی، 3: 141-113. ##صمدی، علی حسین، پریسا بهلولی و نگار سنگ سفیدی. (1391). مروری بر الگوهای مارکوف سویچینگ و کاربردهای آن در اقتصاد. اولین همایش بین المللی اقتصاد سنجی روشها و کاربردها دانشگاه آزاد اسلامی واحد سنندج. ##منظور، داود و امیرکاظم صفاکیش. (1388). پیش‌بینی قیمت برق در بازار برق رقابتی ایران با رویکرد مدل‌های سری زمانی. هفتمین همایش ملی انرژی. ##
Aiube, F.L., T.K.N. Baidya, F.F. Blank, A.B. Mattos, W. Saboia & A.S. Siddiqui. (2013). Modeling Hourly European Electricity Spot Prices via a SARMA-GARCH Approach. Department of Computer and Systems Sciences, Stockholm University. ##Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31: 307-327. ##Bordignon, S., D.W. Bunn, F. Lisi & F. Nan. (2013). Combining Day-Ahead Forecasts for British Electricity Prices. Energy Economics, 35: 88-103. ##Box, G.E.P. & G.M. Jenkins. (1994). Time Series Analysis: Forecasting and Control. (3rd Edition). Prentice Hall, ISBN: 0130607746. ##Cifter. C. (2013). Forecasting Electricity Price Volatility with the Markov-Switching GARCH Model: Evidence from the Nordic Electric Power Market. Electric Power Systems Research, 102: 61-7. ##Engle, R.F. & V.K. Ng. (1993). Measuring and testing the impact of news on volatility. Jornal of Finance, 48: 1749-1778. ##Engle, R.F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of Variance of United Kingdom Inflation. Econometrica, 50: 987-1007. ##Frömmel. M., H. Xing & C. Stepan. (2013). Modeling the Daily Electricity Price Volatility with Realized Measures, Energy Economics. ##Garcia, R.C., J. Contreras, M.V. Akkeren & J.B.C. Garcia. (2005). A GARCH Forecasting Model To Predict Day-Ahead Electricity Prices. IEEE Transactions on Power Systems, 20: 2. ##Glosten, L.R., R. Jagannathan & D. Runkle. (1993). On the relation between the expected value and the volatility on the nominal excess return on stocks. Journal of Financ, 48: 1779-1801. ##Hickey, E., D.G. Loomis & H. Mohammadi. (2012). Forecasting Hourly Electricity Prices Using ARMAX–GARCH Models: An Application to MISO Hubs. Energy Economics, 34(1): 307–315. ##Higgins, S. & A.K. Bera. (1992). A class of nonlinear ARCH model. International Economic Review, 33: 137-158. ##Huisman, R. (2008). The Influence of Temperature on Spike Probablity in Day-Ahead Power Prices. Energy Economics, 30: 2697-2704. ##Huismana, R., C. Huurmana & R. Mahieu. (2007). Hourly Electricity Prices in Day-Ahead Markets. Energy Economics, 29: 240-248. ##Janczura, J. & R. Weron. (2010). An Empirical Comparison of Alternate Regime-Switching Models for Electricity Spot Prices. Energy Economics, 32: 1059-1073. ##Jónsson, T., P. Pinson & H. Madsen. (2010). On the Market Impact of wind Energy Forecasts. Energy Economics, 32: 313-320. ##Karakatsani, N.V. & D.W. Bunn. (2008). Forecasting Electricity Prices: The Impact of Fundamentals and Time-Varying Coefficients. International Journal of Forecasting, 24: 764-785. ##Knittel, C.R. & M.R. Roberts. (2001). An Empirical Examination of Deregulated Electricity Prices. University of California Energy Institute. ##Liu, H. & J. Shi. (2013). Applying ARMA-GARCH Approaches to Forecasting Short-Term Electricity Prices. Energy Economics, 37: 152-166. ##Lucia, J.J. & E.S. Schwartz. (2002). Electricity Prices and Power Derivatives: Evidence from the Nordic Power Exchange. Review of Derivatives Research, 5: 5-50. ##Naeem, M. (2010). A Comparison of Electricity Spot Prices Simulation Using ARMA-GARCH and Mean-Reverting Models. Lappeenranta University of Technology, Department of Mathematics and Physics. ##Serati, M., M. Manera & M. Plotegher. (2007). Modelling electricity prices: from the state of the art to a draft of a new proposal. Liuc Papers, 210: 56. ##Taylor, S.J. (1986). Modeling financial time series, UK: John Wiley and Sons. ##Thomas. S. & H. Mitchell. (2005). GARCH modeling of high frequency volatility in Australia’s national electricity market. ##