نوع مقاله : زبان انگلیسی
نویسندگان
1 دانشیار مدیریت، گروه مدیریت، دانشکده اقتصاد و علوم اجتماعی، دانشگاه شهید چمران اهواز، اهواز، ایران
2 استاد مدیریت، گروه مدیریت، دانشکده اقتصاد و علوم اجتماعی، دانشگاه شهید چمران اهواز، اهواز، ایران.
3 کارشناسی ارشد مدیریت مالی، دانشکده اقتصاد و علوم اجتماعی، دانشگاه شهید چمران اهواز، اهواز، ایران.
چکیده
دلیل اصلی سرمایه گذاری مردم در بازار سهام، به دست آوردن سود است که لازمه آن، داشتن اطلاعات درست از بازار سهام، تغییرات قیمت و پیشبینی روند آتی آن است. بنابراین سرمایهگذاران نیازمند ابزارهای قدرتمند و قابل اعتماد برای پیشبینی قیمت سهام در آینده هستند. هدف اصلی تحقیق حاضر، ارائه مدلی مبتنی بر نوفهزدایی موجک و پیچش زمانی پویا جهت شناخت الگوی قیمت سهام در بورس اوراق بهادار تهران میباشد که به سرمایه گذاران در این راستا کمک نماید. در این راستا، ابتدا با استفاده از گام پیشپردازشی نوفهزدایی موجک، نویز از سریهای زمانی قیمت سهام حذف شده و سپس دادههای استخراجی، به عنوان ورودی مدل پیشبینی پیچش زمانی پویا مورد استفاده قرار میگیرند. برای تجزیه و تحلیل دادههای تحقیق از نرم افزار MATLAB نسخه 9.11 استفاده شده است. جامعه آماری تحقیق حاضر شامل 3 سهم از میان سهام شرکتهای صنعت فولاد بورس اوراق بهادار تهران میباشد. تحقیق در بازه زمانی 1395 تا 1398 انجام شده است. نتایج حاکی از آن است که پیشبینیهای حاصل شده از روش پیچش زمانی پویا مجهز به گام پیشپردازشی نوفهزدایی موجک در مقایسه با پیشبینیهای حاصل شده از روش پیچش زمانی پویا بدون گام پیشپردازشی نوفهزدایی موجک در هر سه سهم مورد بررسی، با خطای بسیار کمتری همراه بوده است.
کلیدواژهها
موضوعات
عنوان مقاله [English]
A method based on wavelet denoising and DTW algorithm for stock price pattern recognition in Tehran stock exchange
نویسندگان [English]
- Rahim Ghasemiyeh 1
- HasanAli Sinaei 2
- Elnaz Ghalambor Dezfoli 3
1 Associate Professor of Management, Department of Management, Faculty of Economics and Social Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Irann
2 Professor of Financial Management, Department of Management, Faculty of Economics and Social Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
3 Master of Financial Management, Department of Management, Faculty of Economics and Social Sciences, Shahid Chamran University of Ahvaz, Ahvaz. Iran.
چکیده [English]
The main reason for people investing in the stock market is to make a profit, which requires accurate information about the stock market, price changes and predicting its future trend. Therefore, investors need powerful and reliable tools for forecasting Stock prices in the future. The main purpose of this study is to present a method based on wavelet denoising and dynamic time warping to identify the stock price pattern in the Tehran Stock Exchange. In this regard, first, using the wavelet denoising preprocessing step, noise is removed from the stock price time series, and then the extracted data is used as input to the dynamic time warping prediction model. MATLAB software version 9.11 was used to analyze the research data. The statistical population of the present study includes 3 shares among the shares of steel industry companies of Tehran Stock Exchange. The research was conducted in the period 1395 to 1398. The results show that the predictions obtained from the dynamic time warping method equipped with the wavelet denoising preprocessing step in comparison with the predictions obtained from the dynamic time warping method without the wavelet denoising preprocessing step in all three shares studied, have been associated with much less accuracy and error.
کلیدواژهها [English]
- Dynamic time warping
- wavelet denoising
- stock
- prediction