نوع مقاله : مقاله مستخرج از رساله دکتری

نویسندگان

1 دکترای اقتصاد، دانشکده‌ی اقتصاد و کارآفرینی، دانشگاه رازی، کرمانشاه، ایران.

2 دانشیار اقتصاد، دانشکده‌ی اقتصاد و کارآفرینی، دانشگاه رازی، کرمانشاه، ایران.

چکیده

چکیده گسترده
معرفی:
در تبیین شوک‌های وارده بر اقتصاد، بررسی نقش بانک‌ها در اعمال سیاست‌های پولی و تأمین مالی حایز اهمیت است. بانک‌ها از طریق ایفای نقش واسطه‌گری وجوه و تأمین کنندگی مالی می‌توانند از تأثیر قابل توجهی بر شکل‌گیری چرخه‌های رونق و رکود برخوردار باشند. از طرفی جایگاه بخش مسکن در اقتصاد در کنار اهمیت تأمین مالی مسکن در تغییر شرایط بازار مسکن ایجاب می‌نماید که به بررسی نقش مذکور در اقتصاد پرداخته شود. در این پژوهش سعی شده تا با توجه به توانایی DSGE در شبیه‌سازی اقتصاد و تبیین رفتار متغیرهای کلان اقتصادی در قبال شوک‌های وارده بر اقتصاد، به بررسی نقش تأمین مالی مسکن در شکل‌گیری و یا تداوم ادوار تجاری ایران پرداخته شود.
 
متدولوژی:
در این پژوهش مبتنی بر متدولوژی اقتصادسنجی،  از مدل تعادل عمومی پویای تصادفی برای بررسی نقش تأمین مالی مسکن بر ادوار تجاری ایران استفاده می‌شود. برای ارزیابی تجربی مدل طراحی شده در این پژوهش از روش مقداردهی (کالیبراسیون) استفاده گردید. همچنین برای برآورد برخی از پارامترهای مدل از روش خودرگرسیون برداری مرتبه اول (1)AR بر مبنای داده‌های متغیرهای اقتصاد کلان طی دوره 1386 لغایت 1397 استفاده شد.
 
 
تصریح مدل پژوهش
  در بازار کالاهای نهایی، شرط تعادل در اقتصاد از برابری عرضه کل و تقاضای کل به صورت زیر به دست می­آید:
 (31)                                                                   
(32)                                                                            
(33)                                                                                  
با فرض اینکه؛
(34)                                                                                             
(35)                                                                                           
(36)                                                                   
حل و تقریب الگو
از آنجا که الگو‌های تعادل عمومی پویای تصادفی عموماً متشکل از معادلات غیرخطی متغیرهای درون‌زای الگو بوده، لازم است از طریق روش‌های خطی‌سازی به معادلات خطی تبدیل شود. برای این منظور از روش‌ لگاریتم خطی‌سازی استفاده نموده و طرفین معادلات بر اساس بسط تیلور حول وضعیت پایدار متغیرها تقریب زده شد که نتایج حاصل از محاسبات مذکور در ادامه آورده می‌شود.
مقداردهی پارامترها
برای ارزیابی تجربی الگو طراحی شده در این پژوهش از روش مقداردهی (کالیبراسیون[1]) استفاده می­شود. کالیبراسیون روشی است برای انتخاب پارامترهای الگو به نحوی‌که بیشترین شباهت و تطابق را با اقتصاد مورد مطالعه داشته باشد.
 
یافته‌ها:
یافته‌های پژوهش نشان می‌دهد که نوسانات اقتصاد نه تنها توسط تکانه‌های غیر مالی مانند تکانه‌های بهروه‌وری در بخش محصولات نهایی و مسکن و تکانه تقاضای مسکن توضیح داده می‌شود، بلکه ناشی از اصطکاک‌های مالی مانند تکانه کیفیت سرمایه بوده که با لحاظ عامل تأمین مالی مسکن، این آثار تشدید می‌شود.
 
نتیجه:
 در این پژوهش با استفاده از چارچوب الگو‌های تعادل عمومی پویای تصادفی، به طراحی یک الگو DSGE با لحاظ تأمین مالی مسکن به صورت هم‌زمان با سایر بخش‌ها پرداخته شد. با لحاظ تأمین مالی مسکن که از طریق بخش بانکی صورت می‌پذیرد، با وارد نمودن بخش‌ مسکن و سیستم بانکی در طراحی الگوی DSGE و برآورد آن، مشاهده گردید که تأمین مالی مسکن می‌تواند تأثیر قابل توجهی بر چرخه­های تجاری بازار مسکن و رشد و پویایی‌های اقتصاد ایجاد نماید. تقویت تکانه‌‌های مالی در این الگو از تأمین مالی مسکن مربوط به بانک‌ها و خانواده‌های با افق نامحدود نشأت می‌گیرد. این موارد یکدیگر را تقویت می‌کنند و در طول زمان به چرخه‌های تجاری گسترش یافته و اثر تقویتی را بر روی پویایی‌های متغیرهای مالی و مسکن ایجاد می‌کنند.
وجه تمایز اصلی الگو طراحی شده در این پژوهش با سایر پژوهش‌های انجام شده در این زمینه، لحاظ بخش‌های بانکی و مسکن به صورت توأم در الگو با هدف بررسی نقش تأمین مالی مسکن بر ادوار تجاری با در نظر گرفتن ساختار اقتصاد ایران بوده، به‌طوری‌که با وارد کردن تکانه‌های جدید به الگو پایه، آثار تکانه‌های مورد تحت دو سناریوی وجود تأمین مالی مسکن و عدم وجود عامل مذکور در الگو، مورد ارزیابی قرار گرفت. در مجموع نتایج حاصل از توابع واکنش آنی گویای موفقیت نسبی الگو در شبیه‌سازی اقتصاد ایران و انطباق الگو با انتظارات و واقعیات اقتصادی می‌باشد.
 
 
[1]  Calibration

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigating the Role of Housing Finance in Iranian Business Cycles, DSGE Approach

نویسندگان [English]

  • hooman malek 1
  • sohrab Delangizan 2
  • mojtaba almasi 2

1 PhD in Economics, Department of Economics, Faculty of Economics and Entrepreneurship, Razi University, Kermanshah, Iran.

2 Associate Professor of Economics, , Department of Economics, Faculty of Economics and Entrepreneurship, Razi University ,Kermanshah, Iran.

چکیده [English]

EXTENDED ABSTRACT
INTRODUCTION
In explaining the shocks to the economy, it is important to examine the role of banks in implementing monetary and financing policies. Banks can have a significant impact on the formation of boom and bust cycles by playing the role of intermediary funds and financiers. On the other hand, the position of the housing sector in the economy, along with the importance of housing financing in changing the housing market conditions, requires that the mentioned role in the economy be examined. In this study, considering the ability of DSGE in simulating the economy and explaining the behavior of macroeconomic variables in the face of shocks to the economy, the role of housing financing in the formation or continuation of Iranian business cycles has been investigated.
METHODOLOGY
In this study based on econometric methodology, a stochastic dynamic general equilibrium model is used to investigate the role of housing financing on Iranian business cycles. To quantify the model designed in this study, the method of calibration was used. Also, to estimate some of the model parameters, the first-order vector autoregression (AR) method was used based on data from macroeconomic variables during the period 2007 to 2019.
Specify the model
In the final goods market, the equilibrium condition in the economy is obtained from the equality of total supply and total demand as follows:
                                                                           (31)
                                                                                      (32)
                                                                                              (33)
assuming that؛
                                                                                                       (34)
                                                                                                     (35)
                                                                           (36)  
Solve and approximate the pattern
Since stochastic dynamic general equilibrium patterns generally consist of nonlinear equations of the endogenous variables of the pattern, it is necessary to convert them to linear equations through linearization methods. For this purpose, the linearization logarithm method was used and the sides of the equations were approximated based on Taylor expansion around the steady state of the variables, the results of the above calculations are given below.
Value parameters
To calibrate the experimental model designed in this research, the method of calibration is used. Calibration is a method for selecting model parameters in a way that is most similar to and compatible with the economy under study (Heidari & Malabahrami, 2016).
FINDINGS
Findings show that economic fluctuations are not only explained by non-financial shocks such as productivity shocks in the final products and housing and housing demand shocks, but also due to financial frictions such as capital quality shocks that in terms of housing financing factor, these effects Intensifies.
 
CONCLUSION
In this study, using the framework of stochastic dynamic general equilibrium models, a DSGE model was designed in terms of housing financing simultaneously with other sectors. In terms of housing financing through the banking sector, by including the housing sector and the banking system in the design of the DSGE model and its estimation, it was observed that housing financing can have a significant impact on the business cycles of the housing market and growth and dynamics. Create the economy. The strengthening of financial shocks in this model stems from the financing of housing for banks and families with unlimited horizons. These reinforce each other and expand into business cycles over time, creating a reinforcing effect on the dynamics of financial and housing variables.
The main difference between the model designed in this study and other studies in this field, in terms of banking and housing sectors in the model with the aim of examining the role of housing financing on business cycles, taking into account the structure of the Iranian economy. Bringing new impulses to the base model, the effects of the impulses under the two scenarios of the existence of housing financing and the absence of the factor mentioned in the model were evaluated. In general, the results obtained from the instantaneous reaction functions indicate the relative success of the model in simulating the Iranian economy and the adaptation of the model to economic expectations and realities.

کلیدواژه‌ها [English]

  • Housing Finance
  • Dynamic Stochastic General Equilibrium Model (DSGE)
  • Monetary Policy
  • Calibration
Abounoori, A., & Teimoury, M. (2013). Investigation of the Effect of Financial Development on Economic Growth: A Comparative Study in OECD and UMI Countries. Economic Growth and Development Research, 3(11), 40-29. Retrieved from https://egdr.journals.pnu.ac.ir/article_411_ee2d33aff0abeb0ea8e10d0221a95099.pdf
Beheshti, M. B., & Mohseni Zonuzi, F. S. (2010). Investigation of housing market in Iran through using monetary transition mechanism. Journal of Economic Modeling Research, 1(1), 187-211. Retrieved from http://jemr.khu.ac.ir/article-1-198-en.html
Bernanke, B. S., & Gertler, M. (1995). Inside the black box: the credit channel of monetary policy transmission. Journal of economic perspectives, 9(4), 27-48.
Cesa-Bianchi, A. (2013). Housing cycles and macroeconomic fluctuations: A global perspective. Journal of International Money and Finance, 37, 215-238.
Ductor, L., & Grechyna, D. (2015). Financial development, real sector, and economic growth. International Review of Economics & Finance, 37, 393-405.
Ge, X., Li, X.-L., & Zheng, L. (2020). The transmission of financial shocks in an estimated DSGE model with housing and banking. Economic Modelling, 89, 215-231.
Gholizade, A. a., & Noroozonejad, M. (2019). Dynamics of Housing Prices and Economic Fluctuations in Iran with the Approach of Dynamic Stochastic General Equilibrium (DSGE). Journal of Economic Modeling Research, 10(36), 37-74. doi:10.29252/jemr.9.36.37
Green, R. K. (1997). Follow the leader: how changes in residential and non‐residential investment predict changes in GDP. Real estate economics, 25(2), 253-270.
Hafezian, F., Zamanian, G., & Shahraki, j. (2020). financial constraint and investment and the firm balance sheet channel of monetary policy transmission. Quarterly Journal of Quantitative Economics, 17(4), 113-136. doi:10.22055/jqe.2020.29878.2102 (In Persian).
Iacoviello, M., & Neri, S. (2010). Housing market spillovers: evidence from an estimated DSGE model. American Economic Journal: Macroeconomics, 2(2), 125-164.
Mahmoodi, E., Nasrollahi, Z., & Yavari, K. (2019). The Effect of Housing Market Fluctuations on Macroeconomy: A DSGE Approach. Quarterly Journal of Applied Theories of Economics, 6(2), 239-268. Retrieved from https://ecoj.tabrizu.ac.ir/article_8866_556e1939d12a98ca023bf8b7362ff509.pdf
Mehregan, N., & Daliri, H. (2013). Banks Respond to Monetary Policy Shocks Based on DSGE Model. Quarterly Journal of Economic Research and Policies, 21(66), 39-68. Retrieved from http://qjerp.ir/article-1-725-en.html
pakniyat, m., Bahrami, J., Tavakolian, H., & Shahhosseini, S. (2018). Banks Engagement in Housing Investment and its relation in Iran's Economy based on DSGE Approach. Iranian Energy Economics, 8(29), 27-67. doi:10.22054/jiee.2019.9916
Pesaran, M., & Xu, T. (2013). Business Cycle Effects of Credit Shocks in a DSGE Model with Firm Defaults.[Online] Available: http://www. econ. cam. ac. uk/emeritus/pesaran/wp13. MacroCredit_PesaranXu-Feb-2013. pdf.
Shahhoseini, S., & Bahrami, J. (2016). Assessment of Macroeconomic Fluctuations and Monetary Transmission Channel in Iran; Dynamic Stochastic General Equilibrium Approach. Economics Research, 16(60), 1-49. doi:10.22054/joer.2016.4200
Shahhosseini, S., & Bahrami, J. (2013). Designing a New Keynesian Dynamic Stochastic General Equilibrium Model for Iran's Economy with Banking Sector. Iranian Journal of Economic Research, 17(53), 55-83. Retrieved from https://ijer.atu.ac.ir/article_2772_5c7db8d339d9057f3575d819c45ec16b.pdf
Tonner, J., & Bruha, J. (2014). The Czech housing market through the lens of a DSGE model containing collateral-constrained households: Czech National Bank.
Walsh, G. (2010). Biopharmaceutical benchmarks 2010. Nature biotechnology, 28(9), 917-924.
Yavari, K., Khodabakhsh, M., & Najarzadeh, R. (2021). Estimation of Resource Allocation Inefficiency in the Iranian Manufacturing Sector. Quarterly Journal of Quantitative Economics, 18(2), 71-84. doi:10.22055/jqe.2021.27519.1964 (In Persian).