نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری اقتصاد کشاورزی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران.

2 دانشیار اقتصاد کشاورزی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران.

3 استادیار اقتصاد کشاورزی، دانشکده علوم زیست محیطی و کشاورزی پایدار، دانشگاه سیستان و بلوچستان، زاهدان، ایران.

چکیده

 بخش کشاورزی یکی از زیر بخش های مهم اقتصادی کشور است که نزدیک به 9 درصد تولید ناخالص داخلی، 21 درصد ارزش صادرات غیر نفتی، حدود 18 درصد اشتغال و نزدیک به 93 درصد تآمین نیازهای غذایی جامعه و تولید مواد اولیه بسیاری از صنایع دیگر را برعهده دارد. همچنین محصولاایرت زراعی و باغی، بخش عمده از تجارت خارجی بخش کشاورزی و سهمی عمده از سبد خانوار را به خود اختصاص داده‌اند. از این رو، مسائل مربوط به حفظ ظرفیت تولید و توان اقتصادی این زیر بخش می‌تواند اقتصاد کشور را متأثر سازد. در این پژوهش، محصولات زراعی و باغی به‌عنوان محصولات کشاورزی در نظر گرفته شد، بنا بر آمارنامه‌های وزارت جهاد کشاورزی و سالنامه‌های آماری درگاه ملی آمار، از سال 1390 تا 1395، سطح زیر کشت محصولات زراعی و باغی، 367252 هکتار و میزان تولید این محصولات، 24119617 تن و  ارزش افزوده بخش کشاورزی در این سال‌ها، 1693951 میلیارد ریال، افزایش داشته است. این پژوهش به‌دنبال بررسی ارتباط بین عوامل اقتصادی و میزان تولید محصولات کشاورزی است. اطلاعات مورد نیاز از درگاه ملی آمار، سالنامه‌های آماری و آمارنامه‌های کشاورزی کشور دریافت گردید. محدوده مکانی این پژوهش شامل تمام استان‌های ایران است.  مدل در قالب اقتصادسنجی فضایی، تصریح و میزان تولید محصولات باغی و زراعی به‌عنوان تولیدات کشاورزی برای 31 استان ایران در بازه زمانی سالهای 1390 تا 1395 در نظر گرفته شده است. پس از جمع‌آوری داده‌ها و تشکیل ماتریس مجاورت، با استفاده از نرم افزار Ststa15 مدل تخمین زده شد. با توجه به آزمون موران و تحلیل نتایج حاصل از چهار مدل فضایی، مدل SAC انتخاب شد. با توجه به نتایج حاصل از این پژوهش با توجه به مدل SAC، تأثیر عوامل اقتصادی بر تولید محصولات زراعی و باغی در استان‌های کشور برآورد شد. در این مطالعه اثرات مستقیم و اثرات غیرمستقیم متغیرهای توضیحی برآورد شد، که نتایج بیانگر معنادار بودن اثرات مستقیم و معنادار نبودن اثرات سرریز بر اساس اثرات غیرمستقیم است. نتایج حاصل از تحلیل یافتههای مدل عمومی فضایی نشان داد که سطح زیرکشت، نرخ تورم، نسبت جوانی جمعیت، محصول ناخالص داخلی و ارزش افزوده بخش کشاورزی عوامل تأثیرگذار بر تولید محصولات زراعی و باغی در استان‌های مورد بررسی می‌باشد. مشاهده شد که توزیع درامد و نرخ شهرنشینی در مدل معنادار نیستند،  متغیرهای معنادار مدل، متغیرهای نرخ تورم و نسبت جوانی جمعیت، سطح زیرکشت، تولید ناخالص داخلی و ارزش افزوده بخش کشاورزی در سطح پنج درصد با تولید رابطه‌ای مستقیم دارند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Spatial Analysis of Economic Factors Affecting Agricultural Production

نویسندگان [English]

  • Maliheh Mollashahi 1
  • Mahmoud Ahmadpour 2
  • Saman Ziaee 2
  • Ebrahim Moradi 3

1 PhD student of Agricultural Economics, College of Agriculture, University of Zabol, Zabol, Iran.

2 Associate Professor of Agricultural Economics, College of Agriculture, university of Zabol, Zabol, Iran.

3 Assistant Professor of Agricultural Economics, College of Environmental Sciences and Sustainable Agriculture, university of Sistan and Baluchestan, Zahedan, Iran.

چکیده [English]

EXTENDED ABSTRACT
INTRODUCTION
Agriculture is one of the most important economic sub-sectors of the country, accounting for about 9 percent of GDP, 21 percent of non-oil export value, about 18 percent of employment, and nearly 93 percent of community food and raw material production in many other industries. Also, agricultural and horticultural products account for the bulk of foreign trade in agricultural sector and a large share of the household basket. Thus, issues related to maintaining the production capacity and economic power of this sub-sector can affect economy of the country .In this study, crops and horticultural crops were considered as agricultural crops. According to statistics of the Ministry of Agriculture Jihad and statistical yearbooks of National Statistics Portal, from 2011 to 2016, the area under cultivation of crops and horticulture increased by 367252 hectares there was an increase of  24119617 tonsin production of these crops  and the value added of agricultural sector increased by 1693951 billion Rials in these years.
 
METHODOLOGY
In this study, spatial data model was used to study the economic factors affecting agricultural production (crop and horticulture) in Iran provinces during the period 2011-2017. The required information was obtained from the National Statistics Portal, Statistical Yearbooks and Agricultural Statistics of Iran. The spatial scope of this study covers all provinces of Iran and since this study is a regionalone, its main issue will be examined in the form of spatial analysis.
Specifying research model
According to theoretical foundations and spatial econometric model, the model specified in this study is SAC model.

𝑃 𝑖𝑡=α+ρ∑j Wij.Pit +𝛽1𝐶𝐴𝑖𝑡. +𝛽2. 𝐺𝐼𝑁𝐼𝑖𝑡 + 𝛽3. 𝐼𝑁𝐹𝑖𝑡 + 𝛽4. 𝑈𝑅𝑖𝑡+ 𝛽5. 𝑌𝑂𝑖𝑡 + 𝛽6. 𝐺𝐷𝑃𝑖𝑡 + 𝛽7. 𝑉𝐴𝑎𝑔𝑟𝑖𝑖𝑡 + Uit
𝑈𝑖𝑡 =λ 𝑊𝑈𝑖𝑡 + 𝜀𝑖𝑡
In this model i: provinces, t: time, α: the width of the origin and β: the coefficients of the explanatory variables (slope coefficients). (P):Production. (CA): Crop cultivation area. (Gini): Gini coefficient. (INF): Inflation Rate. (UR): Urban Rate. (YO): Youth Population Ratio. (GDP): Gross Domestic Product. (VAagri): Value Added Agricultural Sector.
The SAC model is selected to estimate this research.
 
FINDINGS
According to the results of this study, according to SAC model, the impact of economic factors on crop and horticultural production in the provinces of Iran was estimated. Variables from the stipulated model that were significant at 5% level include area of ​​cultivation, inflation rate, youth population ratio, GDP and agricultural value added. In this study, direct and indirect effects of the explanatory variables were estimated.
 
CONCLUSION
The results of general spatial model analysis showed that cultivation area, inflation rate, youth population ratio, GDP and agricultural value added were factors influencing crop production and horticulture in the studied provinces.
 It was observed that income distribution and urbanization rate were not significant in the model, whilesignificant variables of the model, variables of inflation rate and youth population ratio, area of ​​cultivation, GDP and agricultural added value at 5% level were directly related to production.
Therefore it is suggested:
1- Considering inflation rate, authorities should implement incentive policies to attract more investors to agriculture sector.. 2. In government support services, farmers’ land features such as the area of ​​cultivation, equipment, and farming equipment should be paid attention. 3. Given that the proportion of young people has a positive and significant effect on the growth of agricultural production, it is suggested to managers and planners of the agricultural sector that more youth should be supported, provided with incentives and incentives so as to improve production. 4.Based on results as the area under cultivation has a significant and direct impact on agricultural production, individuls and authorities are recommended to maintain and exploit farmland reasonably because rehabilitation and enrichment of land which has been cultivated several times and is drained of minerals is costly.

کلیدواژه‌ها [English]

  • spatial econometrics
  • production
  • crops and horticulture
  • crop area
Abbaszadeh Tehrani N., Beheshtifar M.R. & Morabi, M. (2011). Crop Type Mapping In Qazvin By Using Multi-Temporal Satellite Images: IRSC-LISSIII Data, Environmental Researches, 2(3), 96-87. Available at: https://www.sid.ir/en/journal/ViewPaper.aspx?id=290148 (in Persion).##Ahmadpour, Z., Ghanbari, Q. & Karami, Q. (2004). political organization of space. Tehran: Geographic Organization of the Armed Forces Publications. Third edition. (in Persion). ##Akbari, N. (2005). The Concept of Space and its Measurement in Regional Studies, Iranian Journal of Economic Research, 7(23),39-68. Available at: https://ijer.atu.ac.ir/article_3466.html?lang=en (in Persion). ##Anselin, L. (1988). Spatial Econometrics: Methods and Models; Dord Drecht: Kluwer Academic Publishers. ##Askari, B. A., & Shafiee Kakhki, M. (2016). ECO Trade Potential: The Application of Dynamic Spatial Regression by Considering Spatial Spillover Effects. Journal of Regional Economics and Development, 23(11), 167-197. Available at: https://dx.doi.org/10.22067/erd.v23i11.56563 (in Persion). ##Asgari, A., & Akbari, N. (2001). Space Economics Methodology; Theory and application. Journal of Humanities Research, University of Isfahan, 12(2-1), 122-93. Available at: http://ensani.ir/file/download/article/20120514170144-9183-21.pdf (in Persion). ##Baltagi, B. H. (2005). Econometric Analysis of Panel Data. Third Edition. NewYork: John Wiley and Sons. ##Javad Barati; Zahra karimimoughari; Nader Mehregan (2018). Investigating of the drivers of regional development in Iran: spatial econometric approach. Journal of quantitative Economics, (15)1, 201-224. Available at: https://dx.doi.org/10.22055/jqe.2018.21821.1619 (in Persion). ##Barkhordar, F., & Mohammadinejad, A. (2016) Factors Influencing Growth of Crop Production and Horticulture Subsectors in Iran, Journal of Agricultural Economics Research, 10(38), 15-32. Available at: http://jae.miau.ac.ir/article_2829.html?lang=en (in Persion). ##Behboodi, D., Fallahi, Firooz., & Shebani, A. (2012). Energy Productivity Convergence in Selected OECD countries: Spatial Econometrics Approach, Journal of Applied Economic Studies in Iran, 1(3), 80-57. Available at: https://aes.basu.ac.ir/article_314.html?lang=en (in Persion). ##Chandio, A. A., Jiang, Yu., Koondhar, M. A., & Guangshun, Xu. (2016). Factors Affecting Agricultural Production: An Evidence From Sindh( Pakistan). Advances inEnvironmental Biology, 10(9), 164-171. ##Elhorst, J. P. (2014). Spatial Econometrics From Cross-Sectional Data to Spatial Panels. ##Ghaderi, N., Alijani, B., Hejazizadeh, Z., & Salighe, M. (2018). Space model of rainfed wheat production in Kurdistan province with micro-zoning of agricultural climate. Journal of Applied Research in Geographical Sciences, 11(41), 65-78. Available at: http://jopg.iaularestan.ac.ir/article_545701.html?lang=en (in Persion). ##Hossein Panahi, F., Mandani, F., AmirPour, F., & Nasiri Mahallati, M. (2010). Production potential of several main crops in Kurdistan province during last two decades and their future forecast. Agricultural Ecology, 2(2), 214-206. Available at: https://dx.doi.org/10.22067/jag.v2i2.7625 (in Persion). ##Hosseinzade, R., Dadras moghadam, A., & Gharanjik, M (2021). The effect of structural changes on regional economic growth: spatial panel approach. Journal of quantitative Economics, (18)1, 51-62. Available at:https://dx.doi.org/10.22055/jqe.2020.31664.2175 (in Persion). ##Kiani, M. R., Zare Feyzabadi, A., Kouchaki, A. R., & Nasiri Mahallati, M. (2020). Long Term Evaluation of Intensification in Iran Agriculture and Its Impact on Production Stability (50 years from 1962 to 2011), journal of Agroecology, 11(4), 1183-1203. Available at:https://dx.doi.org/10.22067/jag.v11i4.45939 (in Persion). ##Kravcakova Vozarova, I., & Kotulic, R. (2016). Quantification of the effect of subsidies on the production performance of the Slovak agriculture. Procedia Economic and Finance. University of Presov in Presov, Faculty of Management, 17 novembra, Presov, Slovakia, Vol.39: 298-304. ##LeSage, J. P. (1999) .The Theory & practice of Spatial Econometrics. University of Toledo. ##Monjazeb, M. R., & Nosrati, R. (2018). Advanced Econometrics Models with Eviwes and Stata, Publisher: Mehraban Book, First Edition. (in Persion).. ##Motiei Langroudi, S. H., & Shamsaie, E. (2007). Rural development based on the continuity and sustainability of agriculture A case study of Sajasrud ​​section of Zanjan. Geographical Research, 2(85), 14350-14369. Available at: http://ensani.ir/fa/article/260948 (in Persion). ##Musemwa, L. & Mushunje, A. (2012). Factors affecting yields of field crops and land utilization amongst land reform beneficiaries of Mashonaland Central Province in Ximbabwe, Journal of Development and Agricultural Economics, 4(4), 109-118. ##Musemwa, L., Mushunje, A., Muchenje. V., Aghdasi, F & Zhou, L. (2013 ). Factors affecting effecting of field crop production among resettled farmers in Zimbabwe. 4th International Conference of the African Association of Agricultural Economists (AAAE). September 22-25, 2013, Hammamet, Tunisia . ##Nasiri, S. (2015). Economic study of agricultural production based on the appropriate national cultivation pattern. Third Electronic Conference on New Research in Science and Technology. Electronically. Aseman Moharan Aseman Company. (in Persion). ##Nejati, B., Shateri, M., Bakhshi, M. R., & Ashrafi, A. (2018). Comparative –analytical comparison of efficiency and performance of smallholding and rural production cooperative utilization systems. Quarterly Journal of Rural Development Strategies, 5(2), 172-155. Available at:http://rdsj.torbath.ac.ir/article_73467.html?lang=en (in Persion). ##Najafi Alamdarloo, H., Mortazavi, S. A., & Shemshadi Yazdi, K. (2013). Application of Spatial Econometrics in Agricultural Exports in ECO Members: Panel Data Approach, Journal of Economic Research (Sustainable Growth and Development), 13(3), 62-49. Available at: https://ecor.modares.ac.ir/article-18-3585-en.html (in Persion). ##Nor Lelawati, J., Afizan, A., & Helmy Fadlisham Bin, A. H. (2010). A Study on Factors Affecting Rice Production in Malaysia. 1 st. International Conference on Arts, Social Sciences and Technology iCAST February 2010, At Pulau Pinang. ##Scheiterle, L., & Birner, R. (2016). Comparative advantage and factors affecting maize production in Northern Ghana: A Policy Analysis Matrix Study. 5th International Conference of the African Association of Agricultural Economists (AAAE), 23-26 September, 2016, United Nations Conference Centre, Addis Ababa, Ethiopia. ##Urassa, J. K. (2015). Factors influencing maize crop production at household levels: A case of Rukwa Region in the southern highlands of Tanzania. African journal of agricultural research, 10(10): 1097-1106. ##Ziaiean Firouzabadi, P., Sayyad Bidhendi, L., eskandari nodeh, M. (2010). Mapping and Acreage Estimating of Rice Agricultural Land using RADARSAT a Satellite images. Physical Geography Research Quarterly, 41(68),45-58. Available at: https://jphgr.ut.ac.ir/article_21495.html?lang=en (In persian) ##