Document Type : Research Paper

Authors

1 Statistical Research and Training Center

2 Faculty Member in Statistical Research and Training Center

3 M.S. in the field of Industrial Engineering, University of science and technology, Tehran, Iran

Abstract

One of the important issues in the economy is the prediction of economic growth. The correct prediction of economic growth has an important role in government policy and economic planning and can help policymakers in future decision making. In this research, nonlinear structure with non-linear data on the economic value added of non-linear models based on adaptive-fuzzy networks (ANFIS) is used to predict the GDP of Iran.
To this end, seasonal data on GDP in Iran have been used from spring 1385 to first quarter of 1395 to predict GDP without oil and its growth, divided into three parts: industry, agriculture and services. Neural-fuzzy network modeling has been investigated in three models with different membership functions. Finally, by prioritizing the power of models in prediction, in each of the three sections, the best model is derived according to the error function. The results of the test data for the first nine months of the year of 1395 show the accuracy of the ANFIS model in the prediction. the error values of each type, ANFIS model to predict future values of GDP of non-oil sectors of industry, agriculture and services and for the nine courses forward this index has been predicted. According to the obtained values, the country's non-oil economic growth in 1395 to about 6 percent. this amount in the years 1396 and 1397 respectively 2 and 3.5 percent.

Keywords

صادقی، حسین و مهدی ذوالفقاری. (1390). «مبانی مدل‌های پیش‌بینی در علوم اقتصادی»، چاپ اول، انتشارات نور علم، تهران.## صالحی سربیژن، مرتضی. (1395). «مدلسازی و پیش بینی رشد اقتصادی ایران با استفاده از مدل های ARIMA ، مارکف سوئیچینگ و ANFIS»، فصلنامه پژوهش‌های رشد و توسعه اقتصادی، سال ششم، شماره‌ی 24. صص55-68. ##عباسی نژاد، حسین و احمد محمدی. (1386). «پیش‌بینی نرخ ارز با استفاده از شبکه‌های عصبی و تبدیل موجک»، مجله نامه مفید، سال سیزدهم، شماره‌ی 60. صص 42-19. ##گجراتی، دامودار. (1386). مبانی اقتصادسنجی، حمید ابریشمی، تهران، انتشارات دانشگاه تهران. ##مرکز آمار ایران، نشریات حساب‌های ملی– فصلی، پایگاه اطلاعات داده‌ها. ##منهاج، محمدباقر. (1379). «مبانی شبکه‌های عصبی مصنوعی»، انتشارات دانشگاه صنعتی امیرکبیر. ##نوروشیس، ماریای. (2014). «شبکه‌های عصبی در SPSS»، امیررضا فتحی پور جلیلیان و مازیار نجبا، تهران، انتشارات کیان رایانه سبز. ##نوفرستی،محمد و محبوبه بیات. (۱۳۹۴).«پیش‌بینی رشد اقتصادی ایران به کمک الگوی داده‌های ترکیبی با تواتر متفاوت»، فصلنامه اقتصاد و الگوسازی، دوره‌ی ۴، شماره‌ی 14-15. صص1-23. ##هیماس، سائول. (2009). «پیش‌بینی و مدل‌های اقتصادسنجی»، محمد صادق الحسینی و محسن رنجبر، تهران، انتشارات دنیای اقتصاد. ##
 Bates, D.M. & D.G. Watts. )2007 .(Nonlinear Regression Analysis and Its Applications, second edition, Wiley publications. ##- Costanzo, S., L. Trigo, L. Jimenez & J. Gonzalez. (2007). A Neural Network Model of the Venzuelan Economy, Audio, Transactions of the IRE Professional Group on. ## Diebold, F.X. (2009). Elements of forecasting, international Thomson publishing. ##Dokić, A. & J. Srđan. (2017). Evaluation of agriculture and industry effect on economic health by ANFIS approach, Physica A: Statistical Mechanics and its Applications, Elsevier, vol.479(C), pp: 396-399. ##Gan, W.B. & F.C. Wong. (1993). A Bayesian Vector-autoregression Model for Forecasting Quarterly GDP, The Singapore Experience, Singapore Economic Review, vol.38(2), pp:15-34. ##Gao, Zh., J. Yang & Sh.Tan. (2013). Forecasting Chinese GDP with Mixed Frequency Data Set:A Generalized Lasso Granger Method, Advances in Swarm Intelligence Lecture Notes in Computer Science Vol. (7929), pp: 163-172. ##Gu, P., X. Wang & Y. Chen. (2012). Research on GDP forecast and its relationship with energy consumption., Advances in Applied Economics and Finance, Vol. 4. No.1. ##Jang, J.-S.R. (1993). ANFIS: adaptive-network-based fuzzy inference system, IEEE Transactions on Systems, Man and Cybernetics, vol.23 (3), pp: 665-685. ## Kock, A.B., T. Teräsvirta.(2011). Forecasting Macroeconomic Variables using Neural Network Models and Three Automated Model Selection Techniques, CREATES Research Paper, pp: 2011-27. ##Mladenović, I., M. Milovančević, & S. Sokolov-Mladenović. (2017). Analyzing of innovations influence on economic growth by fuzzy system, Quality & Quantity:International Journal of Methodology, Springer, vol.51(3), pp:1297-1304. ##Mirbagheri, M. (2010). Fuzzy-Logic and Neural Network Fuzzy Forecosting ofIran GDP Growth. African Journal of Business Management, vol.4(6), pp: 925-929. ##Olson, D. & C. Mossman. (2003). Neural Networks of Canadian Stock Returns Using Accounting Ratios. International Journal of Forecasting, vol.19(3), pp: 453-465. ## Ramsey, J. B. & C. Lampart. (1998).The Decomposition of Economic Relationships by Time Scale Using Wavelets: Money and Income, Macroeconomic Dynamics, vol.2(1), pp:49-71. ##Stock, James H. & Mark W. Watson. (2006). A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series, June NBER Working Paper 6607. ##Stokton, D.J., & J.E. Glassman.(1987). An Evaluation of the Forecast Performance of Alternative Models of Inflation. The Review of Economics and Statistics, vol.69(1), pp: 108-17. ##Zhang, G.P. & M. Qi. (2005). Neural Network Forecasting for Seasonal and Trend Time Series, European Journal of Operational Research, vol.160(2), pp: 501-514. ##