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Abstract: 

Negative binomial regression model (NBR) is a popular approach for 

modelling over-dispersed count data with covariates. Several 

parameterizations have been performed for NBR, and the two well-known 

models, negative binomial-1 regression model (NBR-1) and negative 

binomial-2 regression model (NBR-2), have been applied. Another 

parameterization of NBR is negative binomial-P regression model (NBR-P), 

which has an additional parameter and the ability to nest both NBR-1 and 

NBR-2. This paper introduces several forms of bivariate negative binomial 

regression model (BNBR) which can be fitted to bivariate count data with 

covariates. The main advantages of having several forms of BNBR are that 

they are nested and allow likelihood ratio test to be performed for choosing 

the best model, they have flexible forms of mean-variance relationship, they 

can be fitted to bivariate count data with positive, zero or negative 

correlations, and they allow over-dispersion of the two dependent variables. 

Applications of several forms of BNBR have been illustrated on two sets of 

count data; Australian health care and Malaysian motor insurance. 
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1. Introduction 

In statistics, count data is a type of data in which observations 

can take only the non-negative integer values, and these integers 

arise from counting, such as the number of occurrences of an 

event within a fixed period. In this situation, statistical modelling 

of count data has been used in many areas such as economics, 

insurance, biology, finance, environment, engineering and social 

sciences. Poisson distribution can be considered as a standard 

distribution for modelling count data. Poisson regression model is 

a standard model for fitting count data with covariates. However, 

to handle over-dispersed count data, a situation where the 

variance exceeds the mean, negative binomial regression model 

(NBR) has been used as an alternative. Several parameterizations 

have been performed for NBR, and the two well-known models 

are negative binomial-1 regression model (NBR-1) and negative 

binomial-2 regression model (NBR-2) (Cameron and Trivedi 

1986; Cameron and Trivedi 2013; Hilbe 2011; Lawless 1987; 

Winkelmann 2008). Negative binomial-P regression model 

(NBR-P), which has an additional parameter and the ability to 

nest both NBR-1 and NBR-2, is another parameterization of NBR 

(Greene 2008; Zulkifli et al. 2013). Besides NBR, the generalized 

Poisson regression model (GPR) has also been suggested for 

handling under- or over-dispersed count data (Zamani and Ismail 

2012; Karimi et al. 2015). 

Bivariate count data can be fitted using bivariate models such 

as bivariate Poisson distribution (BPD) (Campbell 1934). BPD 

described in Johnson et al. (1997) is based on a trivariate 

reduction method, a method which only allows positive 

correlation. Several applications of bivariate Poisson regression 

model (BPR) based on the trivariate reduction method can be 

found in Gourieroux et al. (1984), King (1989), Jung and 

Winkelmann (1993) and Kocherlakota and Kocherlakota (2001). 

The limitations of bivariate models from the  trivariate reduction 

method can be found in several studies in which a few models 

were suggested, such as modelling dependence through 

correlated random effects (Berkhout and Plug 2004), fitting 
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bivariate data using bivariate generalized negative binomial 

regression model (Gurmu and Elder 2000), modelling bivariate 

data with bivariate negative binomial distribution (BNBD) that 

allows a restricted range of negative correlations (Mitchell and 

Paulson 1981), and modelling dependence through copula 

functions (Cameron et al. 2004; Lee 1999; Ophem 1999). 

BPD which handles negative, zero or positive correlations 

was introduced by Lakshminarayana et al. (1999) who defined 

the distribution from the product of Poisson marginals with a 

multiplicative factor parameter. Using the same method, bivariate 

negative binomial regression model (BNBR) was introduced in 

Famoye (2010). The BNB distribution has an unrestricted 

correlation structure. Furthermore, the BNB distribution is 

superior to the BP distribution since the BNB distribution can be 

applied to describe bivariate count data that exhibits over-

dispersion. Famoye (2010) also defined a BNB regression model 

based on the new BNB distribution. Famoye (2012) compared 

some bivariate regression models including the BNB regression 

and bivariate Poisson log-normal (BPL) regression models. 

Based on literatures, this paper introduces several forms of 

BNBR models which can be fitted to bivariate and correlated 

count data with covariates. The main advantages of having 

several forms of BNB regression are that they are nested and 

allow likelihood ratio test to be performed for choosing the best 

model, they have flexible forms of mean-variance relationship, 

they can be fitted to bivariate count data with positive, zero or 

negative correlations, and they allow over-dispersion of the two 

dependent variables. 

The rest of this paper is organized as follows. Section 2 

discusses the problem statement and research objectives. Section 

3 proposes the joint p.m.f. of BPR. Several forms of BNBR are 

proposed in section 4, while section 5 discusses several tests for 

testing over-dispersion, for testing independence, and for 

choosing the best model. Numerical illustrations are provided in 

section 6 where several forms of BNBR are fitted to two sets of 

data, each with a negative and a positive correlation. The two 
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datasets are the Australian health survey data (Cameron et al. 

1988) and the Malaysian motor insurance claims data. 

2. Problem Statement 

Poisson distribution is characterized by a parameter that its mean 

is equal to its variance. As the mean and variance of Poisson 

distribution are equal, we say that the distribution satisfies equi-

dispersion property. This property is often violated in real-life 

count data. We have over-dispersion (under-dispersion) when the 

variance is greater (less) than the mean. When the principle of 

complete randomness fails (that is, when the data is either over or 

under-dispersed), it is important to use a probability model that 

can handle the situation.  

Mixed distribution can be considered as one of the important 

approaches to obtain a new distribution for count data in statistics 

and probability studies. In particular, mixed Poisson and mixed 

negative binomial distributions provide a more flexible 

alternative for modelling over-dispersed count data compared to 

Poisson distribution. Examples of mixed Poisson and mixed 

negative binomial distributions are negative binomial which is a 

mixture of Poisson and gamma, negative binomial-Pareto, 

Poisson-inverse Gaussian, Poisson weighted exponential and 

Poisson-Lindley. 

For handling over-dispersed count data, a situation in which 

the variance exceeds the mean, negative binomial (NB) 

regression has been used. Several parameterizations have been 

performed for NB regression, and the two well-known models are 

NB-1 and NB-2. NB-P regression, which has an additional 

parameter and has the advantage of nesting both NB-1 and NB-2 

regressions, is another parameterization of NB regression. GP 

distribution is obtained from the limiting form of a generalized 

NB distribution. Based on literatures, different forms of GP 

regressions have been proposed using different parameterization 

of GP regression. The classical GP regression which is also 

known as GP-1 regression, The GP-2 regression which is another 

parameterization of GP regression, The GP-P regression which 

has an additional parameter and has the advantage of nesting both 

146 



 

 

 The Estimation of Count Data using Bivariate Negative …                             147   
 

 

 

GP-1 and GP-2 regressions, are other parameterizations of GP 

regression. 

If we have bivariate or multivariate count data, the bivariate 

or multivariate models can be fitted. There are many forms of 

bivariate and multivariate discrete distribution, such as bivariate 

Poisson (BP) distribution and multivariate Poisson (MP) 

distribution. This study extends the Poisson-weighted exponential 

(P-WE) distribution from the univariate to the bivariate case. 

There are several forms of bivariate discrete distributions based 

on the method of trivariate reduction. The disadvantage of using 

this method is that it only admits positive correlation. Based on 

literatures, the BP distribution, BGP distribution based on GP-1 

and BNB based on NB-2 have been proposed which BP, BGP 

and BNB distributions allow negative, zero or positive 

correlations can be derived from the product of Poisson, GP-1 

and NB-2 marginals with a multiplicative factor parameter. 

The main objectives of this research are to define several 

forms of bivariate negative binomial (BNB) regression namely 

BNB-1, BNB-2 and BNB-P, which can be fitted to bivariate 

count data with covariates. The main advantage of having several 

forms of BNB regression is that they are nested and allow the 

likelihood ratio test to be performed to choose the best model. 

The other advantage is that BNB regressions discussed in this 

study can be fitted to bivariate and over-dispersed count data with 

flexible correlations. 

3. Bivariate Poisson Regression Model (BPR) 

Lakshminarayana et al. (1999) defined a BPD that allows the 

correlation structure to be positive, negative or zero. The joint 

p.m.f. was derived from the product of Poisson marginals with a 

multiplicative factor parameter 
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Where  is a multiplicative factor (or correlation) parameter, and 

1 1( )g y  and 2 2( )g y  are bounded functions in 
1y  and 

2y  

respectively. Non-negativity of {.} in p.m.f. (1) is ensured by 

defining  
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Suppose 1iY  and 2iY ( 1,2,... )i n  are count response variables. 

Following (1)-(2), the joint p.m.f. of BPR is  
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Where 11  ed  and   is the correlation parameter. The 

marginal means, marginal variances and covariance 

are ( ) ( )it it itE Y Var Y   , 1,2t   and 

1 2( )2

1 2 1 2( , ) .i id

i i i iCov Y Y d e
    

  When 0  , random variables 1iY  

and 2iY  are independent, each is distributed as a marginal Poisson 

regression model. When 0   and 0  , we have positive and 

negative correlations respectively. The covariates can be 

incorporated using log link functions 

 

)exp()( 11 βx
T

iiiYE   and )exp()( 22 γx
T
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Where β  and γ  are the regression parameters for 1iy  and 2iy  

respectively, and ix  is the vector of covariates. 

4. Bivariate Negative Binomial Regression Model (BNBR) 

The p.m.f. of univariate NBR is 
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Where 1

iv a   is the dispersion parameter. The mean and 

variance of NBR are 
ii

YE )(  and 
1( ) (1 ) (1 )i i i i i iVar Y v a       . NBR in p.m.f. (4) is also 

referred to as NBR-2. NBR-2 reduces to Poisson regression 

model in the limit as 0a  , and displays over-dispersion when 

0a .  

If we replace 1 2

i

P

i a    in p.m.f. (4), univariate NBR-P is 

obtained. The p.m.f. of NBR-P is (Cameron and Trivedi 2013; 

Ridout et al. 2001; Greene 2008; Zamani and Ismail 2013) 
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Where a  is the dispersion parameter and P  is the functional 

parameter. NBR-P is a flexible model that nests NBR-1 and 

NBR-2 by including an additional parameter, P (functional 

parameter). The mean and variance of NBR-P are 

( )i iE Y  and 1( ) (1 )
i

P

i iV Y a    . NBR-P reduces to NBR-1 

and NBR-2 when 1P   and 2P   respectively, reduces to 

Poisson regression model in the limit when 0a  , and allows 

over-dispersion when 0a  . 

Using the same approach suggested by Lakshminarayana et 

al. (1999), bivariate negative binomial-P regression model 

(BNBR-P) can be derived from the product of two NBR-P 

marginals and a mulitiplicative factor parameter. The p.m.f. of 

BNBR-P is 
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where ta , 1,2t  , are the dispersion parameters, 
tP , 1,2t  , are 

the functional parameters,   is the multiplicative factor 

(correlation) parameter, and 
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1,2t  . The joint p.m.f. of bivariate negative binomial-2 

regression model (BNBR-2), where 1 2 2P P  , is already defined 

in Faroughi and Ismail (2014). 

The marginal means and variances for the new BNBR-P 

are ( )it itE Y  , 1,2t  , and 1
( ) (1 )t

it

P

it it tVar Y a  
  , 1,2t  . The 
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, 1,2t  . From the covariance, it can be 

seen that 1iY  and 2iY   are independent if 0  . When 0  , the 

correlation between response variables is negative and 

when 0  , the correlation is positive. BNBR-P reduces to 

bivariate negative binomial-1 regression model (BNBR-1) and 

BNBR-2 when 1 2 1P P   and 1 2 2P P   respectively, reduces to 

BPR where 0ta  , 1,2t  , and allows over-dispersion when 

0ta  , 1,2t  . 

It is interesting to see that BNBR-P allows the two dependent 

variables to have flexible forms of mean-variance relationship. 

The mean-variance relationship for BPR is equal where 

( )it itVar Y  , 1,2t  , for BNBR-1 it is linear 

where ( ) (1 )it it tVar Y a  , 1,2t  , for BNBR-2 it is quadratic 
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where ( ) (1 )it it t itVar Y a   , 1,2t  , and for BNBR-P it is to the 

P-th power where 1
( ) (1 )t

it

P

it it tVar Y a  
  , 1,2t  . 

Table 1 provides the joint p.m.f., marginal means, marginal 

variances and covariance for BPR, BNBR-1, BNBR-2 and 

BNBR-P. 

5. Tests 

Test for Independence 

Response variables 1iY  and 2iY  are independent when the 

multiplicative factor parameter,  , is zero. Therefore, we can use 

likelihood ratio test (LRT) for testing independence where the 

hypothesis are 0 : 0H   against 1 : 0H   . The LRT is 

 

0 12(ln ln )T L L                     (7) 

 

Where 0L and 1L  are the likelihood functions when 0H  and 1H  

are true respectively. The equation (7) is asymptotically 

distributed as chi-square with one degree of freedom. 

Test for Over dispersion 

LRT in (7) can also be performed to test over dispersion in BPR 

against BNBR-1 (or BNBR-2) where the null hypothesis 

is 0 1 2: 0H a a  . Since BNBR-1 and BNBR-2 reduce to BPR in 

the limit when 0a  , the null hypothesis is on the boundary of 

parameter space. We can use the results of Chernoff (1954), Self 

and Liang (1987) and Famoye (2010), where the statistic is 

asymptotically distributed as 0.25 of probability mass at zero, 0.5 

of chi-square with one degree of freedom and 0.25 of chi-square 

with two degrees of freedom. 

Test for BNBR-1 (or BNBR-2) against BNBR-P 

We can also use the LRT in (7) for testing BNBR-1 (or BNBR-2) 

against BNBR-P where 0 1 2: 1H P P   (or 0 1 2: 2H P P  ). The 

equation (7) is asymptotically distributed as a chi-square with 

two degrees of freedom. 
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Table 1: Joint p.m.f., marginal means, marginal variances and 

covariance for BPR, BNBR-1, BNBR-2 and BNBR-P. 

Model Joint p.m.f 
Marginal means, marginal variances and 

covariance 
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Wald test 

The test of over-dispersion in BPR against BNBR alternatives 

(BNBR-1 or BNBR-2), 0 : 0,   1,2tH a t  , can also be performed 

using Wald test, 
2ˆ

,   1,2
ˆ( )

t

t

a
t

Var a
 , where ˆ ,   1,2ta t  , is the 

estimated dispersion parameter. Since BNBR-1 (or BNBR-2) 

reduces to BPR in the limit when 0a  , the null hypothesis is on 

the boundary of parameter space. The Wald statistics is 

asymptotically distributed as a mixture of 0.5 of probability mass 

at zero and 0.5 of chi-square with one degree of freedom 

(Lawless 1987).  

 The independence of response variables 1iY  and 2iY  can 

also be tested using Wald test, 
2ˆ

ˆ( )Var




, where ̂  is the estimated 

multiplicative factor (or correlation) parameter. The statistics is 

asymptotically distributed as a chi-square with one degree of 

freedom. 

For testing the adequacy of BNBR-1 against BNBR-P, 

0 : 1,   1,2tH P t  , the Wald test, 
2ˆ( 1)

,   1,2
ˆ( )

t

t

P
t

Var P


 , where ˆ

tP  is the 

estimated functional parameter, can be used. For testing the 
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adequacy of BNBR-2 against BNBR-P, 0 : 2,   1,2tH P t  , the 

Wald test is 
2ˆ( 2)

.
ˆ( )

t

t

P

Var P


 Both statistics asymptotically follow a chi-

square distribution with one degree of freedom.  

 In terms of preference between LRT and Wald test, the 

LRT may be better used for the bivariate data. The hypothesis for 

testing over-dispersion under LRT is 0 1 2: 0H a a   compared 

to 0 : 0,   1,2tH a t  , under Wald test. For testing adequacy of 

BNBR-1 (or BNBR-2) against BNBR-P, the hypothesis is 

0 1 2: 1H P P   (or 0 1 2: 2H P P  ) under LRT, compared to 

0 : 1tH P   (or 0 : 2tH P  ), 1,2t  , under Wald test.  

AIC 

Akaike Information Criteria (AIC) is defined 

as 2 2ln( )AIC k L  , where k  is the number of parameters 

and ln( )L is the log likelihood for the estimated model. The model 

with the smallest AIC is the best model. The log-likelihood for 

BNBR-P is 
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, 1,2t  . Log likelihood in (8) 

can also be used for BNBR-1 and BNBR-2, by replacing 

1 2 1P P   for BNBR-1 and 
1 2 2P P   for BNBR-2. 
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6. Applications  

Applications of several forms of BNBR are illustrated on two sets 

of count data with negative and positive correlations; the 

Australian health care data and the Malaysian motor insurance 

data. Australian health care and Malaysian motor insurance data 

are the most useful data sets which are used in this kind of 

studies. Another point is that the correlation coefficient between 

two response variables is negative in the Australian health care 

data and Malaysian motor insurance data has a positive 

correlation coefficient between two response variables. These 

examples imply that the new models have flexible structures. 

Several tests are also applied to choose the best model. Finally, 

the test of independence is performed to indicate whether the data 

should be fitted jointly under bivariate regression model or 

independently under univariate regression model. 

Australian Health Data (1977-1978)  

We consider the Australian health survey data (Cameron et al. 

1988) for fitting BPR and several forms of BNBR. The same data 

was also used by Cameron and Johansson (1997) for fitting 

several univariate models, by Gurmu and Elder (2000) who fitted 

bivariate generalized negative binomial regression model and by 

Famoye (2010) who fitted BNBR-2.  

We consider two possibly dependent and negatively correlated 

response variables namely 1Y , which is the total number of 

prescribed medications used in the past two days  

(PRESCRIBED), and 2Y , which is the total number of non-

prescribed medications used in the past two days  (NON-

PRESCRIBED). The mean and standard deviation for prescribed 

medications are 0.863 and 1.415respectively, the mean and 

standard deviation for non-prescribed medications are 0.356 and 

0.712 respectively, and the correlation between 1iy  and 2iy  is -

0.043. The negative correlation indicates possible negative 

dependency between the two response variables  . The regressors 

are: 
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 (1) Socio-economic variables: an indicator variable for whether 

female (SEX ), age in years (AGE ), age-squared (AGESQ), 

annual income in hundreds of dollars (INCOME ).  

(2) Health insurance status indicator variables: private 

insurance cover (LEVYPLUS ), free government insurance cover 

due to low income (FREEPOOR) and free government cover due 

to old age, disability or veteran status (FREEREPA). The omitted 

category is the default government Medibank insurance cover 

paid for by an income levy (LEVY ). 

 (3) Recent health-status measures: The number of illnesses 

in the past two weeks (ILLNESS ) and the number of days of 

reduced activity the in past two weeks due to illnesses or injuries 

(ACTDAYS ). (4) Long-term health status measures: general 

health questionnaire score using Goldberg's method with high 

score indicating bad health (HSCORE ), indicator variable for 

chronic condition not limiting activity (CHCOND1), and 

indicator variable for chronic condition limiting activity 

(CHCOND2). The most notable feature of the data is over-

dispersion. 

Table 2 provides the estimates and standard errors for BPR, 

BNBR-1, BNBR-2 and BNBR-P. We use R programming with 

nlm function to maximize the log likelihood of BNBR. 

Table 2: BPR, BNBR-1, BNBR-2 and BNBR-P (Australian health 

data) 
Parameter BPR BNBR-1 BNBR-2 BNBR-P 

 est. s.e. est. s.e. est. s.e. est. s.e. 

1Y , 

PRESCRIBED 
        

Intercept -2.70 0.13 -2.66 0.15 -2.75 0.15 -2.70 0.15 

Sex 0.48 0.04  0.55 0.04 0.55 0.04 0.55 0.04 

Age 2.41 0.62 2.27 0.71 2.37 0.73 2.34 0.72 

Agesq -0.64 0.64 -0.56 0.74 -0.59 0.78 -0.62 0.76 

Income 0.00 0.06 0.00 0.06 0.02 0.06 0.00 0.07 

Levyplus 0.29 0.05 0.27 0.06 0.26 0.06 0.27 0.06 

Freepoor -0.05 0.12 -0.09 0.14 -0.05 0.13 -0.09 0.14 

Freerepa 0.30 0.06 0.27 0.07 0.29 0.07 0.28 0.07 

Illness 0.20 0.01 0.20 0.01 0.21 0.01 0.20 0.01 

Actdays 0.03 0.01 0.03 0.00 0.03 0.01 0.03 0.00 

Hscore 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 
Chcond1 0.77 0.05 0.75 0.05 0.77 0.05 0.77 0.05 

Chcond2 1.01 0.05 0.99 0.06 1.02 0.06 1.01 0.06 
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2Y , NON-

PRESCRIBED 
        

Intercept -2.03 0.17 -2.02 0.19 -2.04 0.19 -1.98 0.19 

Sex 0.27 0.05 0.27 0.06 0.27 0.06 0.27 0.06 

Age 2.86 0.95 3.08 1.05 2.86 1.08 2.86 1.06 

Agesq -3.90 1.07 -4.19 1.19 -3.86 1.22 -3.93 1.20 

Income 0.17 0.08 0.13 0.09 0.16 0.09 0.13 0.09 

Levyplus -0.03 0.06 -0.03 0.06 -0.04 0.07 -0.04 0.06 

Freepoor 0.00 0.12 -0.04 0.14 -0.02 0.14 -0.06 0.14 
Freerepa -0.29 0.09 -0.26 0.10 -0.29 0.10 -0.29 0.10 

Illness 0.20 0.02 0.20 0.02 0.21 0.02 0.20 0.02 

Actdays 0.01 0.01 -0.00 0.01 0.01 0.01 -0.00 0.01 
Hscore 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 

Chcond1 0.15 0.06 0.13 0.06 0.15 0.06 0.14 0.06 

Chcond2 0.02 0.08 0.03 0.09 0.02 0.09 0.03 0.09 

         

1a , dispersion  - - 0.39 0.04 0.30 0.03 0.40 0.04 

2a , dispersion
 

- - 0.29 0.03 0.74 0.08 0.37 0.14 

1P , functional - - 1.00 - 2.00 - 1.24 0.12 

2P , functional - - 1.00 - 2.00 - 1.22 0.35 

 , correlation -0.89 0.13 -0.91 0.13 -0.93 0.13 -0.91 0.13 

Log likelihood                                                 -9522.59 -9332.744 -9351.481 -9330.392 

AIC                                                                    19099.18 18723.49 18760.96 18722.78 

 

The LRT for testing BPR against BNBR-1 and BPR against 

BNBR-2 are 379.74 and 342.22 respectively, indicating over-

dispersion in both data. Therefore, BNBR-1 and BNBR-2 are 

better than BPR. 

The LRT for testing BNBR-1 against BNBR-P is 4.70, which 

is significant under 0.10 level since the p-value is 0.095. The 

LRT for testing BNBR-2 against BNBR-P is 42.18, which is 

significant. Based on LRT and AIC, the best model is BNBR-P, 

followed by BNBR-1, BNBR-2 and BPR. 

The estimates of correlation parameter under all models are 

negative, indicating negative dependence between the two data. 

The absolute values of t-ratio for the correlation 

parameter,
ˆ

ˆ. .( )s e




, under BPR, BNBR-1, BNBR-2 and BNBR-P 

respectively are 6.66, 6.90, 7.08 and 6.96, indicating that the two 

response data are significantly dependent. Therefore, the 

response data is suggested to be fitted jointly under BNBR-P, 
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which is the best model compared to BNBR-1, BNBR-2 and 

BPR. 

Table 3: Univariate Poisson regression model, NBR-1, NBR-2 and 

NBR-P  

(Australian health care data) 
Parameter Poisson NBR-1 NBR-2 NBR-P 

 est. s.e. est. s.e. est. s.e. est. s.e. 

1Y , PRESC 
        

Intercept -2.74 0.13 -2.63 0.15 -2.73 0.15 -2.67 0.15 

Sex 0.48 0.04 0.55 0.04 0.55 0.04 0.55 0.04 

Age 2.65 0.61 2.11 0.71 2.16 0.73 2.07 0.72 

Agesq -0.89 0.64 -0.41 0.75 -0.35 0.78 -0.33 0.76 

Income 0.00 0.06 0.00 0.06 0.03 0.06 0.01 0.07 

Levyplus 0.28 0.05 0.27 0.06 0.27 0.06 0.28 0.06 

Freepoor -0.05 0.12 -0.10 0.14 -0.05 0.14 -0.09 0.14 

Freerepa 0.30 0.06 0.28 0.07 0.29 0.07 0.29 0.07 

Illness 0.20 0.01 0.20 0.01 0.21 0.01 0.20 0.01 

Actdays 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 

Hscore 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 

Chcond1 0.78 0.05 0.76 0.05 0.77 0.05 0.78 0.05 

Chcond2 
1.01 0.05 1.00 0.06 1.02 0.06 1.02 0.06 

 
        

a , dispersion
 

- - 0.39 0.04 0.30 0.03 0.40 0.04 

P , functional 
- - - - - - 1.24 0.11 

Log likelihood -5530.767 -5424.565 -5441.482  -5422.376 

AIC 11087.53 10877.13 10910.96 10874.75 

 
 

    

2Y ,NONPRESC 
        

Intercept -2.31 0.17 -2.25 0.19 -2.32 0.19 -2.28 0.15 

Sex 0.24 0.05 0.24 0.06 0.25 0.06 0.24 0.04 

Age 4.69 0.94 4.82 1.04 4.77 1.08 4.84 0.72 

Agesq -5.93 1.07 -6.12 1.18 -6.00 1.22 -6.15 0.76 

Income 0.12 0.08 0.06 0.08 0.11 0.09 0.07 0.07 

Levyplus -0.03 0.06 -0.05 0.06 -0.04 0.07 -0.04 0.06 

Freepoor -0.02 0.12 -0.08 0.14 -0.02 0.14 -0.06 0.14 

Freerepa -0.28 0.09 -0.28 0.10 -0.29 0.10 -0.29 0.07 

Illness 0.20 0.02 0.20 0.02 0.21 0.02 0.21 0.01 

Actdays 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 

Hscore 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 

Chcond1 0.16 0.06 0.14 0.06 0.16 0.06 0.14 0.05 

158 



 

 

 The Estimation of Count Data using Bivariate Negative …                             159   
 

 

 

Chcond2 0.01 0.08 0.01 0.09 0.00 0.09 0.01 0.06 

         

a , dispersion
 

- - 0.29 0.03 0.74 0.08 0.38 0.04 

P , functional 
- - - - - - 1.25 0.11 

Log likelihood                                                 -4011.105 -3929.086 -3931.781 -3928.78 

AIC                                                                    8048.209 7886.172 7891.562 7887.56 

 

As to compare, the univariate Poisson regression model, NBR-1, 

NBR-2 and NBR-P were fitted separately to the two response 

variables so that LRT could be performed for testing 

independence. The estimates and standard errors for the fitted 

models have been shown in Table 3. 

Using the results from Tables 2-3, the LRT for testing 

independence, where 0 : 0H    against 0 : 0H   , can be 

implemented for univariate Poisson against BPR, univariate 

NBR-1 against BNBR-1, univariate NBR-2 against BNBR-2 and 

univariate NBR-P against BNBR-P. The LRT are 38.58, 41.81, 

43.56 and 41.53 respectively, indicating that the two response 

data are dependent under all models (BPR, BNBR-1, BNBR-2 

and BNBR-P). 

Comparing the estimates of covariates between bivariate and 

univariate regression models shows that most covariates have 

similar estimates. However, there are several covariates that 

indicate otherwise. If we focus on BNBR-P (which is the best 

model) and univariate NBR-P, the estimates of Age and Agesq in 

1Y  and the estimates of Intercept, Age, Agesq and Income in 2Y  

are different for both models. 

Comparing the significance of estimates of regression 

parameters between BNBR-P and univariate NBR-P shows that 

both models provide the same insignificant estimates at 0.05 

level, namely Agesq, Income and Freepoor in 1Y , and Income, 

Levyplus, Freepoor, Actdays and Chcond2 in 2Y .  
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Malaysian Motor Insurance Data (2001-2003)  

The data for Own Damage (OD) and Third Party Property 

Damage (TPPD) claims obtained and compiled from ten 

insurance companies in Malaysia is also considered in this 

section. The data is based on 1.01 million private car policies 

with comprehensive coverage (2002) and is supplied by 

Insurance Services Malaysia (ISM). The exposure is expressed in 

a car-year unit and the incurred claims consist of claims already 

paid as well as outstanding. Table 4 shows the rating factors and 

rating classes for the exposures and incurred claims.  

Table 4: Rating factors and rating classes (Malaysian motor insurance 

data) 
Rating factors Rating classes 

  
Vehicle year 0-1  

 2-3  

 4-5  
 6-7  

 8+  

Vehicle c.c. 0-1000 
 1001-1300 

 1301-1500 

 1501-1800 
 1801+ 

Vehicle make Local type 1 

 Local type 2 
 Foreign type 1 

 Foreign type 2 

 Foreign type 3 
Location North 

 East 

 Central 
 South 

 East Malaysia 

  

The mean and standard deviation for OD 1( )Y  claim counts are 

114.60 and 235.55, and the mean and standard deviation for 

TPPD 2( )Y claim counts 41.43 and 99.89. The correlation between 

1iy  and 2iy  is 0.949. The positive correlation indicates possible 

positive dependence between the two response variables.  

Table 5 provides the estimates and standard errors for BPR 

and the new BNBR-1, BNBR-2 and BNBR-P for the fitted data. 
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Table 5: BPR, BNBR-1, BNBR-2 and BNBR-P (Malaysian insurance 

data) 
Parameter BPR BNBR-1 BNBR-2 BNBR-P 

 est. s.e. est. s.e. est. s.e. est. s.e. 

(OD)         

Intercept -3.31 0.03 -3.24 0.07 -3.74 0.14 -3.30 0.08 

2-3 years 0.54 0.01 0.54 0.03 0.58 0.11 0.54 0.04 

4-5 years 0.51 0.01 0.51 0.04 0.40 0.11 0.51 0.04 

6-7 years 0.44 0.01 0.45 0.04 0.32 0.11 0.45 0.04 

8+ years 0.24 0.01 0.24 0.03 0.24 0.11 0.25 0.04 

1001-1300 c.c. -0.03 0.02 -0.10 0.06 0.19 0.12 -0.04 0.07 

1301-1500 c.c. 0.16 0.02 0.08 0.06 1.28 0.12 0.15 0.07 

1501-1800 c.c. 0.41 0.02 0.31 0.06 0.74 0.11 0.37 0.07 

1801+ c.c. 0.47 0.03 0.37 0.06 0.92 0.11 0.45 0.07 

Local type 2 -0.19 0.02 -0.27 0.06 0.62 0.11 -0.21 0.06 

Foreign type 1 -0.23 0.01 -0.21 0.03 -0.36 0.09 -0.22 0.04 

Foreign type 2 0.15 0.02 0.18 0.05 0.26 0.09 0.20 0.05 

Foreign type 3 -0.08 0.02 -0.04 0.05 -0.27 0.13 -0.07 0.07 

East 0.32 0.02 0.38 0.05 0.36 0.11 0.37 0.05 

Central 0.29 0.01 0.29 0.03 0.64 0.10 0.30 0.04 

South 0.24 0.01 0.24 0.04 0.48 0.10 0.27 0.04 

East Malaysia 0.09 0.01 0.10 0.04 0.13 0.10 0.10 0.05 

(TPPD)         

Intercept -4.70 0.04 -4.65 0.08 -4.79 0.08 -4.74 0.08 

2-3 years 0.94 0.02 0.95 0.04 1.09 0.06 0.98 0.05 

4-5 years 0.90 0.03    0.92 0.05 1.00 0.06 0.95 0.05 

6-7 years 1.02 0.02 1.03 0.04 1.13 0.06 1.06 0.05 

8+ years 0.99 0.02 1.01 0.04 1.13 0.06 1.04 0.05 

1001-1300 c.c. 0.04 0.04 -0.03 0.06 0.08 0.06 0.04 0.06 

1301-1500 c.c. -0.00 0.04 -0.08 0.06 0.04 0.07 -0.01 0.07 

1501-1800 c.c. 0.01 0.04 -0.06 0.07 0.05 0.07 0.01 0.07 

1801+ c.c. 0.11 0.04 0.05 0.07 0.17 0.07 0.12 0.07 

Local type 2 -0.24 0.04 -0.32 0.06 -0.26 0.06 -0.26 0.06 

Foreign type 1 -0.13 0.02 -0.16 0.03 -0.25 0.04 -0.17 0.04 

Foreign type 2 -0.10 0.03 -0.11 0.05 -0.19 0.05 -0.12 0.06 

Foreign type 3 -0.47 0.04 -0.44 0.07 -0.45 0.08 -0.44 0.07 

East 0.06 0.03 0.11 0.06 0.07 0.06 0.09 0.06 

Central 0.45 0.02 0.46 0.03 0.49 0.05 0.46 0.04 

South 0.24 0.02 0.25 0.04 0.30 0.05 0.26 0.04 

East Malaysia 0.20 0.02 0.21 0.04 0.19 0.05 0.21 0.05 

1a , dispersion                                                   
- - 6.62 0.42 0.42 0.04 3.41 0.37 

2a , dispersion 
- - 2.27 0.22 0.06 0.01 1.31 0.18 
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1P , functional 
- - 1.00 - 2.00 - 1.21 0.03 

2P , functional 
- - 1.00 - 2.00 - 1.18 0.04 

 , correlation 0.28  0.45 4.16 0.57 3.79 0.46 3.97 0.40 

         

Log likelihood                                                 -5908.89 -3778.88 -4061.16 -3734.20 

AIC                                                                    11887.77  7631.75 8196.32 7546.39 

     

 

The LRT for testing over-dispersion in BPR against BNBR-1 and 

BPR against BNBR-2 are 4260.02 and 3695.46, indicating that 

the data are over-dispersed. Therefore, BNBR-1 and BNBR-2 are 

better models than BPR. 

The LRT for testing BNBR-1 against BNBR-P and BNBR-2 

against BNBR-P are 89.36 and 653.92, indicating that BNBR-P 

is better than both BNBR-1 and BNBR-2. Based on LRT and 

AIC, the best model for the Malaysian motor insurance data is 

BNBR-P, followed by BNBR-1, BNBR-2 and BPR.  

The absolute values of t-ratio for the correlation 

parameter,
ˆ

ˆ. .( )s e




, under BNBR-1, BNBR-2 and BNBR-P are 

7.30, 8.24 and 9.93 respectively, indicating that the two response 

variables are significantly dependent under these models. 

Therefore, it is suggested that the response variables are fitted 

jointly under BNBR-P, which is the best model compared to 

BNBR-2 and BNBR-1. 

The univariate NBR-1, NBR-2 and NBR-P are fitted to both 

response variables although the complete results have not been 

shown here. The log likelihood of univariate NBR-1, NBR-2 and 

NBR-P can be used to perform LRT for testing independence, 

against 1 : 0H   . The LRT for testing univariate NBR-1 against 

BNBR-1, univariate NBR-2 against BNBR-2 and univariate 

NBR-P against BNBR-P respectively are 55.52, 39.06 and 49.14, 

indicating that the two response variables are dependent under 

BNBR-1, BNBR-2 and BNBR-P.  

 

 

162 



 

 

 The Estimation of Count Data using Bivariate Negative …                             163   
 

 

 

7. Conclusions 

This study has defined several new forms of BNBR which are 

nested and allow LRT to be applied for choosing the best model. 

The new forms of BNBR have flexible mean-variance 

relationship, can be fitted to bivariate count data with positive, 

zero or negative correlations, and allow over-dispersion of the 

two response variables. 

We have fitted BP and several forms of BNBR to two sets of 

data, each with a negative and a positive correlation; the 

Australian health survey (Cameron et al. 1988) and the Malaysian 

motor insurance claim. Based on LRT, the best model for the 

Australian data is BNBR-P regression, followed by BNBR-1, 

BNBR-2 and BPR. The estimates of correlation parameter under 

all models are significantly negative, suggesting both responses 

to be fitted jointly under BNBR-P, which is the best model 

compared to BNBR-1, BNBR-2 and BPR. Comparison between 

BNBR-P and univariate NBR-P shows that several estimates of 

covariates in 1Y  and 2Y  are different under both models. 

Comparing the significance of estimates of covariates shows that 

both models provide the same insignificant estimates at 0.05level. 

As for the Malaysian data, the results from LRT implied that 

BNBR-P is the best model, followed by BNBR-1 and BNBR-2. 

The estimates of correlation parameter under BNBR are 

significantly positive, suggesting both response variables to be 

fitted jointly using BNBR-P, which is the best model compared 

to BNBR-1 and BNBR-2. 
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