Berkhout, P. & E.Plug. (2004). A bivariate Poisson Count Data Model Using Conditional Probabilities. Stat Neerl 58:349-364. doi: 10.1111/j.1467-9574.2004.00126.x.## Cameron, A.C. & P. Johansson. (1997). Count Data Regression Using Series Expansions: With Applications. J Appl Econom 12:203-223. Doi: 10.1002/ (SICI) 1099-1255(199705)12:33.0.CO;2-2##Cameron, A.C., T. Li, P.K. Trivedi & D.M. Zimmer. (2004). Modelling the Differences in Counted Outcomes Using Bivariate Copula Models With Application to Mismeasured Counts. The Econometrics Journal 7: 566-584. doi: 10.1111/j.1368-423X.2004.00144.x. ##Cameron, A.C. & P.K. Trivedi. (1986) Econometric Models Based on Count Data: Comparisons and Applications of Some Estimators and Tests. J Appl Econom 1:29-53. doi: 10.1002/jae.3950010104. ##Cameron, A.C. & P.K. Trivedi. (2013). Regression Analysis of Count Data. Cambridge University Press, New York. ##Cameron, A.C., P.K. Trivedi, F. Milne & J. Piggott. (1988). A Microeconomic Model of the Demand for Health Care and Health Insurance in Australia. Rev Econ Stud, 55:85-106. ##Campbel, J.T. (1934). The Poisson Correlation Action. Proceedings of the Edinburg Mathematical Society 4:18-26. ##Chernoff, H. (1954). On the Distribution of The Likelihood ratio. Ann Math Stat 25:573-578. ##Famoye, F. (2010). On the Bivariate Negative Binomial Regression Model. J Appl Stat 37: 969-981. Doi: 10.1080/02664760902984618. ##Famoye, F. (2012). Comparisons of Some Bivariate Regression Models. J Stat Comput Simul. 82(7): 937-949. ##Faroughi, P. & N. Ismail. (2014). A New Bivariate Negative Binomial Regression Model. International Conference on Quantitative Sciences and Its Applications (Icoqsia 2014): Proceedings of the 3rd International Conference on Quantitative Sciences and Its Applications. Vol. 1635. No. 1. AIP Publishing. ##Gourieroux, C., C. Monfort & A. Trognon. (1984). Pseudo Maximum Likelihood Methods: Applications to Poisson Models. Econometrica 52:701-720. ##Greene, W. (2008). Functional Forms for the Negative Binomial Model for Count Data. Econ Lett 99: 585-590. doi:10.1016/j.econlet.2007.10.015. ##Gurmu, S. & J. Elder. (2000). Generalized Bivariate Count Data Regression Models. Econ Lett 68:31-36. ##Hilbe, J. (2011). Negative Binomial Regression. Cambridge University Press, Cambridge. ##Johnson, N., S. Kotz & N. Balakrishnan. (1997). Discrete Multivariate Distributions, John Wiley and Sons, Inc: New York. ##Jung, R.C. & R. Winkelmann. (1993). Two Aspects of Labor Mobility: A Bivariate Poisson Regression Approach. Empi Econ 18:543-556. doi: 10.1007/BF01176203. ##Karimi, A., P. Faroughi & K.A. Rahim. (2015). Modeling and Forecasting of International Tourism Demand in ASEAN Countries. Am J Appl Sci, 12(7): 479- 486. doi: 10.3844/ajassp.2015.479.486. ##King, G. (1989). A Seemingly Unrelated Poisson Regression Model. Sociol Method Res 17:235-255. doi: 10.1080/1350485032000082018B. ##Kocherlakota. S. & K. Kocherlakota. (2001). Regression in the Bivariate Poisson Distribution. Commun Stat Theor M 30:815-825. doi: 10.1081/STA-100002259. ##Lakshminarayana, J., S.N.N. Pandit & K.S. Rao. (1999). On A Bivariate Poisson Distribution. Commun Stat Theor M 28:267-276. doi: 10.1080/03610929908832297. ##Lawless, J.F. (1987). Negative Binomial and Mixed Poisson Regression. Can J Stat 15:209-225. doi: 10.2307/3314912. ##Lee, A. (1999). Modelling Rugby League Data Via Bivariate Negative Binomial Regression. Aust Zn J Stat: 41:141-152. doi: 10.1111/1467-842X.00070. ##Mitchell, C.R. & A.S. Paulson. (1981). A New Bivariate Negative Binomial Distribution. Nav Res Logist Q 28:359–374. doi: 10.1002/nav.3800280302. ##Ophem, H.V. (1999). A general method to estimate correlated discrete random variables. Economet Theor 15:228-237, 1999. doi: 10.1017/S0266466699152058. ##Ridout, M.S, J.P. Hinde & C.G.B. Demetrio. (2001). A Score Test for Testing A Zero-Inflated Poisson Regression Model Against Zero-Inflated Negative Binomial Alternatives. Biometrics 57:219-223. doi: 10.1111/j.0006-341X.2001.00219.x. ##Self, S.G. & K. Liang. (1987). Asymptotic Properties of Maximum Likelihood Estimators and Likelihood Ratio Tests Under Nonstandard Conditions. J Am Stat Assoc 82:605-610. doi: 10.1080/01621459.1987.10478472. ##Winkelmann, R. (2008). Econometric Analysis of Count Data. Springer Verlag, Heidelberg. ##Zamani, H. & N. Ismail. (2012). Functional form for the Generalized Poisson Regression Model. Commun Stat Theor M 41:3666-3675. doi: 10.1080/03610926.2011.564742. ##Zamani, H. & N. Ismail. (2013). Score Test for Testing Zero-Inflated Poisson Regression Against Zero-Inflated Generalized Poisson Alternatives. J Appl Stat 40:2056-2068. doi: 10.1080/02664763.2013.804904. ##Zulkifli, M., N. Ismail & A.M. Razali. (2013).
Analysis of Vehicle Theft: A Case Study in Malaysia Using Functional Forms of Negative Binomial Regression Models. Appl Math Inform Sci 7: 389-395. dx.doi.org/10.12785/amis/072L02. ##