Document Type : Research Paper

Abstract

Value at risk is a new risk measure for measuring risk in financial institute. In this paper, a practical model base on fuzzy credibility theory for measuring value at risk is introduced. For this purpose, return of assets are considered in shape of triangular fuzzy numbers and value at risk is estimated by credibility distribution for triangular fuzzy variables. Then, value at risk for an investment company with different approaches is calculated for analyzing the results of this modeling approach and obtaining the appropriate time window. For this purpose, value at risk is estimated by three methods which are using fuzzy credibility theory with the time windows of 6 months and 4 months for parameters estimation and the traditional method of simple variance-covariance and the results are compared by Bernoulli unconditional coverage test. The result shows that value at risk by fuzzy credibility theory which use the four-month window of time for estimating of parameters provide more accurate specifying. Because return and risk of assets are uncertain variables in real world, using this model can transfer calculations to the uncertain environment and researchers are leaded to correct conclusions. Moreover, introduced model reduce volume of computations dramatically and value at risk is estimated easier than conventional methods such as methods base on GARCH family.

Keywords

Almeida, R.J. & U. Kaymak. (2009). Probabilistic Fuzzy Systems in Value‐At‐Risk Estimation. Intelligent Systems in Accounting, Finance and Management, 16(1‐2): 49-70. ##Balthazar, L. (2006). From Basel 1 to Basel 3. In From Basel 1 to Basel 3: The Integration of State-of-the-Art Risk Modeling in Banking Regulation (pp. 209-213). Palgrave Macmillan UK. ##Daníelsson, J. (2011). Financial risk forecasting: the theory and practice of forecasting market risk with implementation in R and Matlab (Vol. 588). John Wiley & Sons. ##De Cooman, G. (1997). Possibility Theory I: the Measure-and integral-Theoretic Groundwork. International Journal of General Systems, 25(4): 291-323. ##Dubois, D. & H. Prade. (2012). Possibility Theory: An Approach to Computerized Processing of Uncertainty. Springer Science & Business Media. ##Embrechts, P., A. McNeil & D. Straumann. (2002). Correlation and Dependence in Risk Management: Properties and Pitfalls. Risk Management: Value at Risk and Beyond, 176-223. ##Fama, E.F. (1965). The Behavior of Stock-Market Prices. The journal of Business, 38(1): 34-105. ##Gupta, P., M.K. Mehlawat, M. Inuiguchi & S. Chandra. (2014). Fuzzy Portfolio Optimization. Studies in Fuzziness and Soft Computing, 316. ##Heyde, C.C. (1999). A Risky Asset Model with Strong Dependence Through Fractal Activity Time. Journal of Applied Probability, 1234-1239. ##Hosking, J., G. Bonti & D. Siegel. (2000). Beyond the Lognormal. RISK-London-Risk Magazine Limited-, 13(5): 59-62. ##Huang, C. & C. Moraga. (2002). A Fuzzy Risk Model and Its Matrix Algorithm. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(04): 347-362. ##Huang, X. (2010). What Is Portfolio Analysis. In Portfolio Analysis (pp. 1-9). Springer Berlin Heidelberg. ##Katagiri, H., T. Uno, K. Kato, H. Tsuda & H. Tsubaki. (2014). Random Fuzzy Bilevel Linear Programming Through Possibility-Based Value at Risk Model. International Journal of Machine Learning and Cybernetics, 5(2): 211-224. ##Kaufman, A. & M.M. Gupta. (1991). Introduction to Fuzzy Arithmetic. Van Nostrand Reinhold Company. ##Klir, G. & B. Yuan. (1995). Fuzzy Sets and Fuzzy Logic (Vol. 4). New Jersey: Prentice hall. ##Koenig, M. & J. Meissner. (2015). Value-at-Risk Optimal Policies for Revenue Management Problems. International Journal of Production Economics, 166: 11-19. ##Konno, H. & H. Yamazaki. (1991). Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market. Management Science, 37(5): 519-531. ##Kupiec, P. (1995). Techniques for Verifying the Accuracy of Risk Management Models. The Journal of Derivatives, 3: 73-84. ##Lee, L.W. & S.M. Chen. (2008). Fuzzy Risk Analysis Based on Fuzzy Numbers with Different Shapes and Different Deviations. Expert Systems with Applications, 34(4): 2763-2771. ##Liu, B. (2006). A Survey of Credibility Theory. Fuzzy Optimization and Decision Making, 5(4): 387-408. ##Liu, B. (2007). Uncertainty Theory, 2nd. ##Liu, B. (2004). Uncertainty Theory: An Introduction to its Axiomatic Foundations. ##Liu, B. & B. Liu. (2002). Theory and Practice of Uncertain Programming (pp. 78-81). Heidelberg: Physica-verlag. ##Liu, B. & Y.K. Liu. (2002). Expected value of Fuzzy Variable And Fuzzy Expected Value Models. IEEE Transactions on Fuzzy Systems, 10(4): 445-450. ##Liu, Y. & J. Gao. (2007). The Independent of Fuzzy Variables in Credibility Theory and Its Applications. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 15: 1-20. ##Mandelbrot, B.B. (1997). The Variation of Certain Speculative Prices. InFractals and Scaling in Finance (pp. 371-418). Springer New York. ##Markowitz, H. (1952). Portfolio Selection. The journal of Finance, 7(1): 77-91. ##McNeil, A.J. & R. Frey. (2000). Estimation of Tail-Related Risk Measures for Heteroscedastic Financial Time Series: An Extreme Value Approach. Journal of empirical finance, 7(3): 271-300. ##Moussa, A.M., J.S. Kamdem & M. Terraza. (2014). Fuzzy Value-at-Risk and Expected Shortfall for Portfolios with Heavy-Tailed Returns. Economic Modelling, 39: 247-256. ##Nahmias, S. (1978). Fuzzy variables. Fuzzy Sets and Systems, 1(2): 97-110. ##Peng, J. (2008). Measuring Fuzzy Risk by Credibilistic Value at Risk. InInnovative Computing Information and Control, 2008. ICICIC'08. 3rd International Conference on (pp. 270-270). IEEE. ##Peng, J. (2011). Credibilistic Value and Average Value at Risk in Fuzzy Risk Analysis. Fuzzy Information and Engineering, 3(1): 69-79. ##Rachel, C., H. Ronald & K. Kess. (1999). Optimal Portfolio Selection in a Value-at Risk Frame Work, Journal of Banking and Finance, 25: 117. ##Wang, B., S. Wang & J. Watada. (2011a). Fuzzy-Portfolio-Selection Models with Value-at-Risk. IEEE Transactions on Fuzzy Systems, 19(4): 758-769. ##Wang, S. & J. Watada. (2011b). Two-Stage Fuzzy Stochastic Programming with Value-at-Risk Criteria. Applied Soft Computing, 11(1): 1044-1056. ##Whitworth, B. L. (2003). U.S. Patent No. 6,622,129. Washington, DC: U.S. Patent and Trademark Office. ##Xu, D. & U. Kaymak. (2008). Value-at-Risk Estimation by Using Probabilistic Fuzzy Systems. In Fuzzy Systems, 2008. FUZZ-IEEE 2008.(IEEE World Congress on Computational Intelligence). IEEE International Conference on (pp. 2109-2116). IEEE. ##Xu, Z., S. Shang, W. Qian & W. Shu. (2010). A Method for Fuzzy Risk Analysis Based on the New Similarity of Trapezoidal Fuzzy Numbers. Expert Systems with Applications, 37(3): 1920-1927. ##Zimmermann, H.J. (1996). Fuzzy Control. In Fuzzy Set Theory and Its Applications (pp. 203-240). Springer Netherlands. ##