Document Type : Research Paper

Authors

1 fuaclty member

2 fauclty member

3 expert

Abstract

The purpose of this study, is evaluating the effectiveness of monetary policy on the economy. Accordingly, in this study using the Factor Augmented Vector Auto Regressive model and maximization expectations algorithm and 120 economic variables with 1368 to 1392 has been studied to assess the effectiveness of monetary policy in Iran. Considering that interest rates in the banking operations cannot be regarded control tool for the monetary authorities, in this study, using an alternative interest rate. The results indicate that, interest rate shocks have a delayed effect on the money market. So that, in this case one standard deviation hit to interest rates shock, money market has reactions after three months delays to show shock which mainly due to stickiness of contracts related to investment deposits respectively. This Issue, In the labor market and product market reaction is similar.On the other hand, according to the factor agmented vector autoregressive model based on the estimated model with different factor and lags operator, to be appear, according to Bernanke et al (2005) is a trade - off between the number of factors and lags in Iran's economy, so that by increasing the number of operating of factors reduced lags.

Keywords

بانک مرکزی جمهوری اسلامی ایران، نماگرهای مختلف.## جلالی نائینی، احمد رضا و مریم همتی. (1390). بررسی اثر شوک­های پولی بر 12 گروه اصلی شاخص بهای کالاها و خدمات مصرفی با استفاده از الگوی خود ­توضیح برداری عاملی تعمیم یافته. فصلنامه پژوهش­های اقتصادی ایران، 3(4): 247-241. ##حیدری، حسن. (1390). ارزیابی تاثیر شوک­های پولی بر قیمت و سطح فعالیت­ها در بخش مسکن با استفاده از یک الگوی  .FAVARفصلنامه تحقیقات مدل سازی اقتصادی، ‏6(2): 153- 129. ##خداپرست شیرازی، جلیل. (1393). اندازه­گیری اثرات شوک سیاست پولی در ایران: رویکرد خود توضیح برداری عامل تعمیم یافته (FAVAR). اقتصاد مقداری، 101:1-75. ##خضری، محسن و بهرام سبحانی، کاظم یاوری و حسن حیدری. (1394). بررسی اثرات متغیر زمانی تعیین کننده­های تورم: مدل فضا- حالت. مدلسازی اقتصادی، 46:1-25. ##شریفی­رنانی،­ حسین و اکبر کمیجانی و حمید شهرستانی. (1388). بررسی ساز وکار انتقال پولی در ایران رویکرد خود رگرسیونی برداری ساختاری. فصلنامه اقتصاد کاربردی، 4(3): 176-145. ##
Ahmadi, P. & A. Ritschl. (2010). Depression Econometrics: A FAVAR model of Monetary Policy During the Great Depression. International Review of Economics & Finance, 25(3): 202-18. ##Bai, J. & S. Ng. (2002). Determining the Number of Factors in Approximate Factor, Models. Journal of Econometrica 70(1): 191-221. ##Bai, J. & S. Ng. (2007). Determining the Number of Primitive Shocks in Factormodels. Journal of Business & Economic Statistics, 25(2): 52-60. ##Bernanke, B. & A. Blinder. (1992). The Federal Funds Rate and the Channels of Monetary Transmission. American Economic Review, 82 (4), 901-21. ##Bernanke, B. & J. Boivin. (2003). Monetary Policy in a Data-rich Environment. Journal of Monetary Economics,50(5): 525-46. ##Bernanke, B. & M. Gertler. (1995). Inside the Black Box: The Credit Channel of Monetary Policy Transmission. Journal of Economic Perspectives,19(9): 27–48. ##Bork, l. (2010). Macro Factors, Monetary Policy Analysis and Affine Term Structure Models. Journal of International Money and Finance, 25(6): 953–73. ##Breitung, J. & S. Eickmeier. (2005). Dynamic Factor Models. Deutsche Bundes bank Discussion Paper. 78(1): 181-211. ##Clements, M. (2016). Real time Factor Model Forecasting and the Effects Of Instability. Computational Statistics & Data Analysis,100(1): 661-675. ##Dempster, A., M. Laird & D. Rubin. (1977). Maximum likelihood from  Incomplete Data Via the EM algorithm. Journal of the Royal Statistical Society,39(1): 1-38. ##Fernald, J., M. Spiegel & E. Swanson. (2014). Monetary Policy Effectiveness in China: Evidence from a FAVAR Model. Journal of International Money and Finance,79(1), 89-103. ##Forni, M. & L. Reichlin. (2003). Let’s Get Real: A Dynamic Factor Analytical Approach to Disaggregated Business Cycles. Review of Economic Studies, 65(2):453-74. ##Forni, M., M. Hallin & L. Reichlin. (2005). The Generalized Dynamic Factor Model: Identification and Estimation. Review of Economics and Statistics, 82(5): 540-54. ##Koopman, S. & N. Shephard. (1992). Exact Score for Time Series Models in State Space Form. Biometrika Journal, 79(4): 823-26. ##Koopman, S., N. Shephard & J. Doornik. (1999). Statistical Algorithms for Models in State Space Using Ssfpack. Econometrics Journal: 2,107-60. ##Metiu, N. (2016). How Does the Stock Market Respond to Changes in Bank Lending Standards?. Economics Letters,144(1): 92-97. ##Mishkin, S. (1995). Symposium on the Monetary Transmission Mechanism. The Journal of Economic Perspectives, 9(4): 3-10. ##Rosoiu, A. (2015). Monetary Policy and Factor-Augmented VAR Model. Procedia Economics and Finance,32(1): 400-407. ##Shumway, R. & D. Stoffer. (1982). An Approach to Time Series Smoothing and Forecasting Using the EM Algorithm. Journal of Time Series Analysis 3(4): 226-53. ##Sims, C. & Z. Tao. (1981). Does Monetary Policy Generate Recessions?, Review of International Economics, 21(1): 35-48. ##Taylor, J. (1993). Discretion Versus Policy Rules in Practice.Carnegie-Rochester Conference Series on Public Policy, 39: 195-214. ##Wu, J. & F. Xia. (2015). The Macroeconomic Effects of Uncertainty Shocks: The role of the Financial Channel. Journal of Economic Dynamics and Control,69(1): 319-349. ##