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Abstract:
Fractal analyzing of continuous processes have recently emerged in
literatures in various domains. Existence of long memory in many processes
including financial time series has been evidenced via different
methodologies in many literatures in the past decade. This has inspired many
recent literatures on quantifying the fractional Brownian motion (fBm)
characteristics of financial time series. This paper questions the accuracy of
commonly applied fractal analyzing methods on explaining persistent or anti-
persistent behavior of time series understudy. Rescaled range (R/S) and
power spectrum techniques produce fractal dimensions for daily returns of
twelve Malaysian stocks from the most well performed firms in Kuala
Lumpur stock exchange. Zipf’s law generates linear and logarithmic power-
law distribution plots to evaluate the validity of estimated fractal dimensions
on prescribing persistent and anti-persistent characteristics with less
ambiguity. Findings of this study recommend a more thoughtful approach on
classifying persistent and anti-persistent behaviors of financial time series by
utilizing existing fractal analyzing methods.
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1. Introduction
here have been two major approaches in literatures facing
financial time series since the last decades. Some literatures have
considered a random unpredictable behavior for market and
consequently have applied ready-to-use statistical methods,
which are based on Gaussian distribution and Brownian motion,
for explaining the market behavior. These literatures have used a
vast number of statistical methods to examine market data, but
mostly have applied the methods on a particular cluster of data
without extending and examining the same methods on different
scales. Other literatures have rejected a Gaussian behavior for
market through observed non-stationary features and fat tails
distribution of financial data.

Quantifying financial time series by considering their scale
invariance, non-stationary and non-Gaussian behavior flourished
following a series of valuable literatures by Mandelbrot [1]-[3]
who created and developed the concept of fractal geometry and
then the fractal dimension by extending the previous works of
Hurst and Hölder [4],[5]. Considering scale invariance feature of
financial time series, mining it with Fractal dimension may
produce valuable insight for pattern recognition, modeling and
forecasting of market behavior, overcoming the shortcomings of
commonly used Gaussian based statistical methods.

Non-Gaussian distribution and long memory existence of
market data have been observed and reported through many
literatures [6],[7]. This fact has encouraged many researchers to
apply new scale invariance methodologies based on fractal
dimension and Hurst exponent to analyze market patterns. Many
literatures have applied fractal analysis extensively on equities
[8], [9], commodities [10] and exchange rates [11], [12]. Yet,
complexity in measuring fractal dimension for one dimensional
data (time series) has produced ambiguous results in the
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literatures. The common drive among majority of studies in this
domain is to prove the existence of long memory in time series,
then to evaluate its level of roughness through fractal dimension,
and finally to show the persistence or anti-persistence
characteristics of the series [13].

Uncertainty exists in measuring the exact amount of fractal
dimension for various market data. Application of fractal
dimension as an indicator to show the level of roughness, that is
the level of volatility in financial time series [14], shows the
significance of an accurate measurement for fractal dimension. In
the literatures are rooted when applying different methods to
extract the fractal dimension. Meanwhile, the coherence between
a non-stationary fractional Brownian motion (fBm) and its
counterpart, the fractional Gaussian noise (fGn), encouraged a
new structured methodology of fractal analysis in[15], [16] which
provide consistent results by applying most of fractal dimension
estimation methods on a given class (fBm or fGn) and
inconsistent results for the other class.

This paper reviews and examines two commonly used
methods of measuring fractal dimension of time series; the
Rescaled Range (R/S) analysis and Power Spectrum analysis. We
use daily return data of 12 major stocks in Kuala Lumpur stock
exchange (KLSE). This paper evaluates the accuracy of results
produced by the two methods qualitatively through observational
assessment with Zipf’s law distribution of data.

2. Methodology
Fractal dimension and Hurst exponent
Financial time series are in the category of self-affine data. A
self-affine set of data has a specific scale invariance feature in
that different parts should be rescaled by different amounts in
different directions to resemble the original. Self-affine fractals
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look more complicated than self-similar fractals, which are
rescaled by the same factor in any direction and produce a more
obvious scale invariance and likeness in different scales. Yet, the
constant relation between scaling factors in self-affine fractals
keep them scale invariant, which is the case of financial time
series.
This scale invariant relationship is generally defined as:
SFy= SFx

H (1)
where SFx is the scaling factor in X coordinate; that is the time
coordinate for time series data, SFy is the scaling factor in Y
coordinate; that is the return of market and H is the Hurst
exponent.
Therefore, from the (1):
H=log SFy / log SFx (2)
Hurst exponent has a range of zero to 1 and for self-affine set of
data it is directly related to fractal dimension through:
D=2-H (3)
where D is the fractal dimension and its range is between 1 and 2.
In general, if in any set of data with H=0.5(D=1.5) we have a
Brownian motion, it suggests no correlation of data in Y
coordinates (no correlation in market returns) although scaling
factor in Y coordinate is related to scaling factor in X coordinate
through a power-law rule. Characteristics of the self-affine fractal
when H≠0.5(D≠1.5) is the condition that has resulted in major
ambiguity in the literatures. A time series has a “persistent”
behavior for 0.5<H<(1 (1<D<1.5), where changes in Y coordinate
are positively correlated (that is, an increase is more expected to
follow by another increase and vice versa). For “anti-persistent”
behavior, 0<H<(0.5 (1.5<D<2), we expect changes in Y are
followed by a change in different directions.
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Fractional Brownian motion (fBm) and Fractional Gaussian noise
(fGn)
Mandelbrot [17] introduced the concept of “fractional Brownian
motion (fBm)” to describe the processes characterized by
H≠0.5(D≠1.5) in contrast to a Brownian motion. There is another
group of self-affine fractal processes called “fractional Gaussian
noise (fGn)”, that is a series of successive increments in an fBm.
An fGn constitutes by applying a “First difference”
transformation on an fBm and reversely applying a “Cumulative
Sum” on an fBm constructs an fGn. Therefore, these two families
of series are inter-convertible and carry the same Hurst exponent
and Fractal dimension. However, they possess fundamentally
different properties. The fBm process is non- stationary with
stationary increments while the fGn is a stationary process with
constant mean and variance.

Fractal Dimension estimation through Rescaled Range analysis
Rescaled Range method (R/S) was initiated by Hurst [5] for
calculating the H exponent. For various windows W of a process,
the range of observations R(W) in Y coordinate is divided by
standard deviation of differenced data within same window S(W),
giving the R(W)/S(W) ratio. Hurst found a power-law relationship
between R(W)/S(W) ratio and the sizes of observation windows,
R(W)/S(W) α WH , where H is the Hurst exponent.
In practice, the series is divided into a number of intervals of
length w, and (w), S(w) are then measured. Repeat the process for
different window lengths,. Let R/S(w) be the average ratio
R(W)/S(w). en plot the logarithms of R/S(w) versus the logarithms
of windows size w.
R/S(w) =R(W)/S(w)=wH (4)
For a self-affine process, this plot follows a straight line whose
slope equals the Hurst exponent H. The fractal dimension of R/S
analysis DRS is then calculated through the relationship, from (3).

DRS=2-H (5)
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Fractal Dimension estimation through Power Spectrum Analysis
Power spectrum method has been used extensively in literatures
for pattern detection in different types of signals in physics and
mathematics since 17th century [19], [20].
Power spectrum of a time series is expressed as the square of the
amplitude of its Fourier transform and practically is a way to
express the variance of the time series at different temporal
scales. The power spectral density E(f) of a time series has a
power-law relationship with time (frequency) and is given by:

E(f) α f-B (6)
Where f is frequency and f=1/t (where t is time). The exponent 

is the slope of regression line and it is related to Hurst exponent,
, and fractal dimension, , through:

HPS:fGn=(B-1)/2 & DPS:fBn=(5-B)/2 (7), (8)

For a fGn processes,
HPS:fGn=(B+1)/2 & DPS:fBn=(3-B)/2 (9), (10)

Where HPS:fGn and DPS:fGn are Hurst exponent and fractal
dimension, respectively. For a stationary fractional Gaussian
noise -1<  <1, where as for a non-stationary fractional
Brownian motion time series, 1<  <3 . Therefore, a fractional
Brownian motion and a fractional Gaussian noise characterized
by the same Hurst exponent have different spectral exponents:

 fBm=  fGn-2 (11)

There is a subtle critical fact that put power spectrum analysis
ahead of rescaled range analysis in analyzing an unknown self-
affine process.  exponent covers a wider range of processes
than H exponent. Therefore, finding the  exponent of time
series before estimating the H exponent and fractal dimension
would avoid estimation errors.
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Many literatures have understated this serious issue on
analyzing self-affine processes. A logical structured approach for
fractal analyzing of a self-affine time series is:

1. Verifying the power-law behavior of process and estimate
its  exponent by power spectrum analysis;

2. 1<  <3 shows a non-stationary fBm process. Transform
this process to a stationary fGn before further analysis.

3. In a self-affine time series fBm and fGn share the same H
exponent with different  exponent.

4. For a self-affine process with -1<  <1, the H exponent and
fractal dimension are calculated through R/S method.

5. Final analysis reveals the persistency or anti-persistency
characteristic of the financial time series understudy,
according to estimated fractal dimension.

The above structural method is currently one of the most
logical approaches for fractal analysis of self-affine processes and
avoids common ambiguities in many literatures.
This study applies the structured methodology on fractal analysis
of Malaysian stocks market. The accuracy of persistence
characteristics of individual stocks is verified by comparing the
results with Zip’s law observational method. This comparison
expresses the quality of the applied methodology on fractal
analysis of Malaysian stocks.

Zipf’s law as an observational tool on determining persistent and
anti-persistent processes
Zipf’s law is another instance of power-law based on what Zipf
[21] is termed as “principal of less effort”. It states that the
observation of the frequency of occurrences of any events has a
power-law relationship with the rank of event; in which r=1 and
r=n denote the ranks for the least and the most frequent events
respectively. More specifically, it states that the frequency of any
occurrence is inversely proportional to its rank r as:
fr=f1/r (12)
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where fr and f1 are the frequency of rth largest occurrences and
the most frequent event respectively. Zipf’s law can be
represented by regressing the log of frequency of occurrence as a
function of rank, which leads to a power-law with a slope close to
unity.  Zipf’s law can be generalized as:

fr=f1/ra (13)

where the log-log regression plot can be linear with any slope.
More generally it can be written as:

Xr α r-α (14)

where Xr is value of any random variable with rank r and α=1 for
Zipf’s law, or α≠1 generalized Zipf’s law. Equation (14) maybe
applied on any continuous process. For a random process (that is,
Brownian motion), Zipf’s law appears linear in linear plot and in
log-log plot it does not show any power-law behavior as expected
from (14). For a Brownian motion on log-log plot,  it produces a
continuous roll-off from horizontal line (that is, α=0) to a vertical
line (that is, α=∞ ), that indicates no value is more probable than
any other value in a random process.These observations are
different in the case of fBm process. Persistent and anti-persistent
behaviors in fBm produce a certain range of values before
moving off gradually to another range of values. In an anti-
persistent fBm the quantity of values between transitions is more
gradual and contains more points than in a persistent fBm. In
practice, use both the linear and logarithmic plots because the
specific structural features of the Zipf’s plot may partially hide
compared to noise by the scale expansion related to log-log plots.
Any step in a Zipf’s plot is indicative of structural discontinuities
within data.

Data
We consider the daily closing prices reported by Kuala Lumpur

Stock Exchange (KLSE), extracted through Yahoo Finance
website. The selected stocks are 12 stocks from most well
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performed Malaysian firms in different sectors ranked and
reported by Bloomberg in 2011.The sample period is 2003:M1 to
2010:M12, yielding 2050 observations on each stock. The
number of observations for each variable is equal and long
enough to produce reliable and comparable results. To avoid any
non-stationarity due to changes in mean of data over time, this
data is adjusted for stock splits. Failure in adjustment would have
showed discontinuities which are unrelated to any fundamentals
and results in biased findings in fractal analysis [22], [23].

Results

Following the suggested structured methodology of fractal
analysis, β of each stock is first calculated through a power
spectrum analysis as listed in Table 1.

Table 1: β of stocks with power spectrum analysis
May
Bank

CIMB
TEN
AG
A

PB
BAN

K

GEN
TIN
G

SIME
RHBCA

P
IOICOR

P
AMMB YTL PPB

HL
BANK

Ps fBm B 1.79 1.84 1.79 1.67 1.80 1.81 1.67 1.85 1.74 1.67 1.74 1.74
Ps fGm
B

0.01 -0.01 -0.10 -0.22 -0.00 -0.01 -0.14 0.01 0.05 -0.13 0.02 -0.08

Fractal Dimensions
Ps fBm 1.60 1.57 1.60 1.62 1.55 1.59 1.66 1.57 1.62 1.66 1.62 1.62

Ps fGm 1.49 1.50 1.55 1.61 1.50 1.50 1.57 1.49 1.47 1.56 1.48 1.54
R/S fBm
B

1.48 1.52 1.53 1.47 1.53 1.44 1.50 1.49 1.50 1.54 1.47 1.52

R/S fGm
B

1.75 1.75 1.68 1.79 1.76 1.76 1.81 1.71 1.82 1.80 1.80 1.81

The result shows 1<  <3 for all the variables, which categorize
all the time-series considered as fractional Brownian motion
(fBm) processes. This finding suggests a transformation of data
from fBm to fGn in the second step prior to applying any other
fractal analysis method. However, to have a brighter observation
and to examine the accuracy of the suggested methodology, we
apply R/S analysis on both fBm and fGn (that is, first difference
transform of fBm). Fractal dimensions obtained from R/S analysis
on fBm and fGn, together with fractal dimensions estimated by
power spectrum analysis on fBm and fGn, are also listed in Table
1.
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The estimated fractal dimensions for PS on fBm and R/S on
fGn methods on all considered stocks are 1.5<D<2, which
exhibits anti-persistent behavior for all the stocks but with a
different level of roughness. However, application of PS on fGn
and direct application of R/S method on these stocks (that is, R/S
on fBm) produce 1.4<D<1.6, which exhibit slight persistency to
anti-persistent behaviors. These estimated fractal dimensions via
different methods are displayed in Fig. 1.

Fig 1: Estimated fractal dimensions via different methods

Notice that the fractal dimensions estimated through methods of
R/S on fGn, and power spectrum on both fBm and fGN display
similar trend across the stocks (that is, similar ups and downs for
different stocks but with a shift in fractal dimension amount).
This similarity could be evidence on the methods’ accuracy.

Nevertheless, fractal dimensions estimated by these three
methods (that is, power spectrum on fBm and fGn, and R/S on
(fGn) belong to different ranges of deviation which characterizes
the related stocks (that is,  classified  persistency of related
stocks). The R/S on fGn and PS on fGn produce fractal
dimensions in the range of 1.6<D<1.9 and 1.5<D<1.7
respectively, representing anti-persistent fBm of 1.4<D<1.7,
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representing both persistent and anti-persistent behaviors for the
different stocks. Applying any of these three methods fairly
demonstrates a common relative change in roughness of the
stocks, yet it creates vagueness in categorizing the stocks’
persistency. Further analysis of designated stocks, through
evaluation of the persistent behavior through plots of Zipf’s law
distribution of data, could overcome this ambiguity toward the
selection of the most appropriate method among these three
methods.
Fig. 2 exhibit linear and logarithmic plots of Zipf’s law, for all
the 12 stocks.
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Figure 2: Linear and logarithmic Zipf’s plots for all the 12 stocks
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Zipf’s plots represent persistent behavior for MAYBANK, CIMB
and TENAGA (Fig.2). The sharp transition from one range of
values to another range is a particular feature of persistent
behavior which is obvious in Zipf’s plots of these first three
stocks. For PBBANK, we observe more gradual transition
between high and low values with more concentration of points at
each transition curve, which is a particular feature of anti-
persistent behavior. GENTING and IOICORP (Fig.3) produce
similar plots including a gap in the plots due to discontinuities of
data sets. The sharp fall in market return for both of these stocks
has affected their structural behavior severely. Thus, neither
fractal dimension nor Zipf’s plots are helpful on stating the
persistent behavior for these two stocks.  Zipf’s plot of SIME
(Fig.3) illustrates sharp upward and downward roll-offs to
exemplify a persistent characteristic; yet abundance of points in a
few transition curves, which add to a little anti-persistent
behavior of the stock, reduces its persistent characteristic toward
randomness. For RHBCAP (Fig. 3), although the arithmetic plot
may look like the arithmetic plot of SIME (Fig. 3), richness of
points in turning curves of RHBCAP (Fig. 3), which is clearly
observable through both the linear and log-log plots, indicates
strong anti-persistent behavior of this stock. Following the above
procedure on the analysis of the Zipf’s plot of stocks as
illustrated in Fig.4, more anti-persistent than persistent
characteristic is observable for AMMB, YTL, PPB and
HLBANK (Fig. 4).

Conclusion

The findings from this study emphasize the subtleness of
applying fractal analysis methods on financial data. Sensitivity is
particularly higher in order to extract persistent or anti-persistent
characteristic of series. Although all methods, which categorized
the stocks as fractional Brownian processes,  separates them from
randomness (that is, Brownian motion) accurately, applying the
same methods for further analysis to the data in classifying them
as persistent or antipersistent, should be done with more
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thoughtfulness. This study has revealed the discrepancy in results
on detecting the persistent and anti-persistent fractal behavior by
applying different analysis methods. It has been identified that
even proposed structured fractal analysis method could not
produce consistent results. The application of less used tools such
as Zipf’s plots on fractal analyzing of financial data along with
common fractal analysis tools produce a better judgment on
characterizing market behavior. Further similar studies on
different financial data sets by applying more diverse fractal
dimension estimation methods may end in choosing the best
fractal analyzing procedure, reducing the ambiguity of results on
this domain.
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