نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه تهران

2 عضو هیات علمی/ دانشگاه تهران

چکیده

در دهه‌های اخیر، انرژی در کنار سایر عوامل تولید نقش تعیین‌کننده‌ای در رشد اقتصادی کشور‌ها داشته و اهمیت آن همچنان رو به افزایش است. رشد اقتصاد جهان و روند صنعتی شدن موجب افزایش تقاضا و مصرف انرژی شده است. از سوی دیگر از میان بخش‌های مصرف‌کننده‌ی انرژی، بخش خانگی– تجاری یکی از پرمصرف‌کننده‌ترین بخش‌های تقاضای انرژی است. بطوری‌که بیش از 34% از میزان مصرف انرژی را نسبت به سایر بخش‌‌ها به خود اختصاص داده است، بنابراین به منظور کنترل عرضه و تقاضای انرژی و برنامه‌ریزی صحیح مصرف انرژی این بخش باید به صورت دقیق پیش‌بینی شود. در این مقاله با استفاده از روند متغیر‌های تاثیرگذار بر تقاضای انرژی بخش خانگی – تجاری ایران، وضعیت آتی تقاضای انرژی این بخش در ایران پیش‌بینی شده است. با استفاده از الگوریتم بهینه‌سازی انبوه ذرات، دو فرم خطی و نمایی از معادلات تقاضای انرژی تحت 54 سناریوی مختلف با ورودی‌های متفاوت مورد بررسی قرار گرفته و از داده‌های مربوط به سال‌های 1346 تا 1389 برای توسعه الگو‌ها و انتخاب سناریوی مناسب استفاده شده است. نتایج نشان داد الگوی نمایی با ورودی‌های ارزش‌ افزوده کل منهای ارزش افزوده بخش نفت، ارزش ساختمان‌های ساخته شده، تعداد کل خانوار و شاخص قیمت مصرف انرژی مناسب‌ترین الگو است. در نهایت با استفاده از الگوی انتخابی، تقاضای انرژی این بخش تا سال 1410 پیش‌بینی شده است.

کلیدواژه‌ها

عنوان مقاله [English]

Selecting the appropriate scenario to predict the energy demand of residential and commercial sectors using Particle swarm optimization

چکیده [English]

Besides other production factors, energy has had a determinative role in economic growth of the countries and its importance increases in recent decades. The global economic growth and the industrialization process lead to an increase in energy demand and consumption. On the other hand, the residential and commercial sectors are the biggest energy consumption sectors, as it has allocated more than 34% of energy consumption amount to itself compared to other sectors. Therefore, for controlling the energy supply and demand and for correct planning, the energy consumption of these sectors must be predicted exactly. In this article, the future status of energy demand of residential and commercial sectors in Iran is predicted using variables affecting energy demand of these sectors. By using the PSO algorithm, both linear and exponential forms of energy demand equations were studied under 54 different scenarios with various variables. The data from 1968 to 2011 were applied for model development and the appropriate scenario choice. Results show that an exponential model with inputs including total value added minus that of the oil sector, value of made buildings, total number of households and consumer energy price index is the most suitable model. Finally, energy demand of residential and commercial sectors is estimated up to the year 2032.

کلیدواژه‌ها [English]

  • energy demand
  • residential and commercial sectors
  • Particle Swarm Optimization
  • Forecasting
ابریشمی، حمید، حجت اله غنیمی فرد، مهدی احراری و منیره رضایی. (1389). پیش‌بینی قیمت گازوئیل خلیج فارس مبتنی بر تحلیل تکنیکی و شبکه‌های عصبی. فصلنامه مطالعات اقتصاد انرژی، 7(24):192-171.
دفتر برنامه­ریزی کلان برق و انرژی. (1392). ترازنامة انرژی سال 1390.
ذوالفقاری، مهدی، حسین صادقی، محمود حقانی و حسین فلاحی. (1388). تخمین تابع تقاضای برق در بخش خانگی با استفاده از جستجوی هارمونی.کنفرانس ملی مهندسی و مدیریت زیر ساخت‌ها، پردیس دانشکده‌های فنی دانشگاه تهران، 5-7 آبان ماه.
شیری، هیوا و مهدی پیلتن. (1389). برآورد تقاضای انرژی در بخش صنعت فلز ایران با استفاده از الگوریتم گروه ذرات. هفتمین کنفرانس بین‌المللی مهندسی صنایع، دانشگاه صنعتی اصفهان.
صادقی، حسین، مهدی ذوالفقاری. (1388). تخمین تابع تقاضای بنزین در بخش حمل و نقل با استفاده از الگوریتم ژنتیک. فصلنامه مطالعات انرژی، 6(21):‌1– 27.
عشقی، کورش و مهدی کریمی. (1391). بهینه‌سازی ترکیبی و الگوریتم های فرا‌ابتکاری، تهران‌: انتشارات آذرین مهر.
میر‌فخرالدینی، سیدحیدر، حمید بابایی میبدی، علی مروتی شریف آبادی. (1391). پیش بینی مصرف انرژی ایران با استفاده از الگو ترکیبی الگوریتم ژنتیک و شبکه عصبی مصنوعی و مقایسه آن با الگوهای سنتی. پژوهش‌های مدیریت در ایران، 17(2):196-222.
Ardakani, F. & Ardehali, M. (2014). Long-term Electrical Energy Consumption Forecasting for Developing and Developed Economies Based on different Optimized Models and Historical Data Types. Energy,65:452-461.
Bahrami, S., Hooshmand. R. A. & Parastegari. M. (2014). Short Term Electric Load Forecasting by Wavelet Transform and Grey Model Improved by PSO (Particle Swarm Optimization) Algorithm. Energy.72:434-442.
Behrang, M., Assareh. E. , Assari. M. & Ghanbarzadeh. (2011). A. Total Energy Demand Estimation in Iran using Bees Algorithm. Energy Sources, Part B: Economics, Planning, and Policy, 6(3): 294-303.
Behrang, M., Assareh. E., Ghalambaz. M., Assari, M. & Noghrehabadi. (2011). A. Forecasting Future Oil Demand in Iran Using GSA (Gravitational Search Algorithm). Energy, 36(9): 5649-5654.
Ersel Canyurt, O., Ceylan. H, Kemal Ozturk. H. & Hepbasli. (2004). A. Energy Demand Estimation Based on Two-Different Genetic Algorithm Approaches.Energy Sources, 26(14): 1313-1320.
Kaveh, A., Shamsapour. N., Sheikholeslami. R. & Mashhadian. (2012). M. Forecasting Transport Energy Demand in Iran Using Meta-Heuristic Algorithms.Int J Optim Civil Eng, 2(4): 533-544.
Kıran, MS., Ozceylan. E., Gunduz. M. & Paksoy. ( 2012). T. A Novel Hybrid Approach bBased on Particle Swarm Optimization and Ant colony Algorithm to Forecast Energy Demand of Turkey.Energy Conversion and Management, 53(1):75-83.
Lee, Y-S. & Tong. L-I. ( 2011). Forecasting Energy Consumption Using a Grey Model Improved by Incorporating Genetic Programming. Energy Conversion and Management, 52(1): 147-152.
Mikki, S.M. & A.A. Kishk. (2008). Particle Swarm Optimization: a Physics-Based Approach. Synthesis Lectures on Computational Electromagnetics, 3(1): p. 1-103.
Shakouri, GH. & Kazemi. (2011). A. Energy Demand Forecast of Residential and Commercial Sectors: Iran Case Study, Proceedings of the 41st International Conference on Computers & Industrial Engineering 23-25 October, Los Angeles, California, USA..
Suganthi, L. & Samuel. A.A. (2012). Energy Models for Demand Forecasting-A Review. Renewable and Sustainable Energy Reviews, 16(2): p. 1223-1240.
Suo, R. & Wang, F. (2010). The Application of Combination Forecasting Model in Chinese Energy Consumption.Mathematics in Practice and Theory,. 40(18): 80-85.
Yu, S., Zhu. K. & Zhang. X. ( 2012). Demand Projection of China Using a Path-Coefficient Analysis and PSO–GA Approach. Energy Conversion and Management, 53(1): 142-153.