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Abstract: 

   In the present paper, a case of fuzzy regression model was estimated for 

Iranian industrial energy intensity. To do so, at first the trapezoidal fuzzy 

values of energy intensity observations were calculated based on the 

Minimizing Entropy Principle Algorithm(MEPA) and then a tripled 

recursive model was estimated for fuzzified energy intensity. Because of 

application of the partial adjustment model, we explored the short-run and 

long-run membership functions for each of the explanatory variable fuzzy 

coefficients. The estimation results show that the lagged energy intensity 

values are the only factor which has a positive effect on the industrial 

energy intensity attitude, whereas other explanatory variables including 

energy price, value added share and technical efficiency score have 

negative effect on energy intensity trend in the period (1982-2006). 

Moreover the estimation results indicated the numerous potential energy 

saving in Iranian industrial sector which is mainly emerged from pure 

energy intensity in short-run. 
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1. Introduction 

The application of linear estimation of economic variables 

relationships is greatly important for empirical research and has a 

key role in our understanding of economic issues. Regression 

analysis is one of the favorite methods of estimation. The 

classical regression method only provides a crisp estimation for 

economic relations and is usually used in most economic surveys. 

However, there are numerous things which cause vague attributes 

in variables, coefficients, parameters and relations. Therefore, the 

use of a fuzzy method can be helpful for understanding these 

issues. Some of the reasons include inherent nature of some 

variables, errors in data collection and vague nature of 

parameters. In brief, the fuzzy nature of economic parameters and 

relations makes the causal analysis more difficult. Hence, it is 

necessary to apply a method for inferring the economic 

relationships in a fuzzy environment. Fuzzy theory is very helpful 

in understanding the vague problems, such as parameters, 

variables and relationships. 

The fuzzy set theory was first proposed by Zadeh (1965) and 

has since been successfully applied to many fields, such as fuzzy 

controls, fuzzy expert systems, and fuzzy database systems. Basic 

concepts of fuzzy set, fuzzy number, linguistic value, and 

defuzzification methods are explained in many studies 

(Welkenhaur, 2001; Cheng et al. 2006).  

Traditional econometric models typically assume that the 

underlying relationships are linear and that the relevant inputs 

and outputs are well-defined or crisp. Given that well-defined 

linear empirical models are always just approximations to the 

relationships suggested by theory, the important question is 

whether these approximations are sufficient to capture the 

behavior of real-world systems. In practice, however, there are 

cases in which observations are fuzzy in nature which cannot be 

described by probability distributions. The observations 

described by linguistic terms such as low, high, many, 

approximately equal to 5, etc. are typical examples. How to 
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estimate the parameters under a fuzzy environment is a challenge 

to the classical regression analyses, too. 

One way to handle these problems connected to uncertainty 

and imprecision of input values and theoretical relationships is to 

apply the fuzzy logic framework, based on the fuzzy set theory 

proposed by Zadeh (1965). For example, in the production 

theory, there are many types of functions defined for the 

production function which obviously differs from describing 

technological attributes. 

The fuzzy regression model has first been introduced by 

Tanaka and Wang (2001). In the literature, several papers have 

addressed the issue of regression analysis under fuzzy 

environment. Recent articles. such as Sanchez and Gomez (2003, 

2004), Sanchez (2006), Kao and Chyu (2003) and Ishibichi and 

Nii (2001). used fuzzy regression in their analyses.  

In fuzzy regressions, the difference between the observed and 

the estimated values is assumed to be due to the ambiguity 

inherently present in the system. Two general approaches are 

used to fit the fuzzy regression model. One is the possibilistic 

regression model (Tanaka and Wang, 2001) which minimizes the 

fuzziness of the model by minimizing the total spreads of its 

fuzzy coefficients, subject to including the data points of each 

sample within a specified feasible data interval . The other is the 

least squares fuzzy regression model, which minimizes the 

distance between the output of the model and the observed 

output, based on their models and spreads (D`Urso & Gastaldi, 

2000, 2001, 2002; D`Urso, 2003).  

In both approaches, the notion of “best fit” incorporates the 

optimization of a functional form associated with the problem. In 

particular, in the possibilistic approach, “this functional takes the 

form of a measure of the spreads of the estimated output, either 

as a weighted linear sum involving the estimated coefficients in 

linear regression, or as quadratic form in the case of exponential 

possibilistic regression” (Diamond & Tanaka, 1998). In the least-

squares approach, “the functional to be minimized is a quadratic 

distance between the observed and estimated outputs. This 
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reduces to a class of quadratic optimization problems and 

constrained quadratic optimization” (Diamond & Tanaka, 1998). 

In this paper, we apply a least-squares approach fuzzy 

regression model which was introduced by D`Urso(2003) for the 

estimation of the Energy Intensity regression equation, to  Iranian 

Industrial sector. The model functional relationship is crisp and 

its data structure is crisp input-fuzzy output.  

The layout of the paper is as follows: section 2 will describe 

some aspects of fuzzy concepts and a review of Fuzzy sets, 

numbers and relations. In section 3, the time series fuzzfication 

model is explained. In section 4 we shall introduce a fuzzy linear 

regression (FLR) model. The specifications of the data, variables 

and the model estimation are explained in section 5. In section 6, 

we will accomplish the fuzzification of energy intensity. 

Estimation results are presented in section 7 and section 8 is 

allocated to the summary and conclusion. 

2. Fuzzy sets and Data  

The fuzzy set theory was first proposed by Zadeh(1965). It is 

primarily concerned with quantifying and reasoning, using 

natural language in which words can have ambiguous meanings. 

Fuzzy logic is an analytical approach that applies to multiple 

memberships of sets and different levels belonging to any one 

set. The fuzzy theory has a basic assumption that is a non-clear 

boundary between members and non-members of a set. The main 

research fields in fuzzy theory are fuzzy sets, fuzzy logic and 

fuzzy measure. Some essential definitions of fuzzy theory are 

described as follows (Tsai et al, 2006; Liu,2009; Lin & Wu,2008) 

 

Definition 2-1: Let X  be a universe of discourse, A is a fuzzy 

subset of X and x is a point of X. A is defined as: 

 XxxxA A  ))(,(     

where )(xA  is the membership function (MF) of associates x 

in A with a real number in the interval [0,1]. The value of  )(xA  

represents the membership grade of x. Suppose xD  is a domain of 

x. The mapping of the membership function will be: 
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 1,0:)( xA Dx . Fuzzy set A is sometimes represented as 

follows: 
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Definition 2-2: The cut of fuzzy set A is defined as: 

 ,)(   xXxA A     

where  1,0 .  

 

Definition 2-3: Fuzzy set A is normal if  1)(max xA . 

 

Definition 2-4: N is called a triangular fuzzy number and can be a 

triplet  rm,, , if the membership function of N or )(xN  is defined 

as: 
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Where m, and r are real numbers and rm  . The 

triangular fuzzy number is shown in Fig.1. Indeed if there is 

r , then the fuzzy number will be called homogenous 

(symmetric), otherwise  non-homogenous(non-symmetric). A 

homogenous (symmetric) fuzzy number can be written in the 

form of ),( cm and rc   . If the fuzzy number is written as 

),,( RL ccm , rcc RL  , , then this is called a non-symmetric 

fuzzy number or an LR fuzzy number. In all these types, m  is the 

middle point. 

 

Definition 2-5: N is called a trapezoidal fuzzy number and can be a 

four  rmm ,,, 21 , if the membership function of N or )(xN  is 

defined as: 

6 
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where 21 ,, mm and r are real numbers and rmm  21 . 

The trapezoidal fuzzy number is shown in Fig. 2. 

 

Definition 2-6: Fuzzy relations are fuzzy sets defined on 

universal sets which are Cartesian products. They capture the 

strength of association among elements of two or more sets, not 

just whether such an association exists or not. Let A and B be two 

fuzzy sets, the fuzzy relation from A to B is denoted by BAR   

given by 

     ByAxyxyxR BA  ,)(),(min,,      

 
Fig 1: A triangular fuzzy number N 

 
 

 
Fig 2: A trapezoidal fuzzy number N 
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3. The Time Series fuzzification model  

In the Fuzzy regression analysis on time series data, model 

variables may be crisp or fuzzy numbers, but observations on the 

variables are usually crisp. This is also true about both dependent 

and explanatory variables. The main difference between the 

traditional time series and fuzzy time series is that the observed 

values of the former are real numbers while the latter are fuzzy 

sets or linguistic values. 

  

Definition 1-3: ....),.........3,2,1()( ttY  is a subset of 1R . Let )(tY  

be the universe of discourse defined by the fuzzy set )(ti . If 

)(tF consists of ,.......)2,1()( iti then )(tF  is called a fuzzy time 

series on )(tY  (Liu, 2009). 

There are two important techniques which can be used for 

fuzzifying historical data (crisp time series) and constructing the 

fuzzy time series  These techniques are the Sang and Chisson 

method (1993) and Minimizing Entropy Principle Algorithm 

(MEPA) (Christensen,1980). The first can be applied to make 

homogeneous fuzzy numbers, and the second for non-

homogenous fuzzy numbers. In this paper, we will apply the 

MEPA method. The purpose of this technique is to fuzzify real-

value data sets and partition the data set into a number of fuzzy 

sets and then to construct membership functions objectively. The 

entropy of a probability distribution is a measure of the 

uncertainty of the distribution (Yager & Filev, 1994). To 

subdivide the data into membership functions, establishing the 
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threshold between classes of data is needed. The MEPA method 

determines the threshold line and then starts the segmentation 

process by dividing the data into two classes. Therefore, a 

repeated partitioning with threshold value calculations will allow 

us to partition the data set into a number of fuzzy sets (Ross, 

2000). 

Assume that a threshold value is a sought for sample in the 

range between 1x  and 2x . An entropy equation with each value of 

x  is written for the regions ],[ 11 xxx   and ],[ 21 xxx  , and we 

mark the first region p and the second region q .An entropy with 

each value of x in the region between 1x  and 2x  is explained as: 

)()()()()( xSxqxSxpxS qp    

where 

 )(ln)()(ln)()( 2211 xpxpxpxpxS p               

 )(ln)()(ln)()( 2211 xqxqxqxqxSq   

where )(xpk  and )(xqk  are conditional probabilities that the 

class k sample has in the regions ],[ 11 xxx   and ],[ 21 xxx  , 

respectively. )(xp  and )(xq  are probabilities that all samples are 

in the regions ],[ 11 xxx   and ],[ 21 xxx   respectively, and 

1)()(  xqxp . 

 A value of x that gives the minimum entropy is the optimum 

threshold value. The value estimates of )(xpk , )(,)( xpxqk  and 

)(xq , are calculated as follows: 
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 where  
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)(xnk number of class k samples located in 

],[ 11 xxx   

)(xn   the total number of samples located in ],[ 11 xxx   

)(xNk number of class k samples located in ],[ 21 xxx   

)(xN  the total number of samples located in 

],[ 21 xxx   

n total number of samples in ],[ 21 xx . 

      

While moving x in the region ],[ 21 xx , we calculate the values 

of entropy for each position of x, as in Fig.3. The value of x in 

the region that holds the minimum entropy is called the primary 

threshold (PRI) value. Repeating this process, secondary 

threshold values can be determined which are denoted as SEC1 

and SEC2. To develop seven partitions, we need tertiary 

threshold values, here denoted as TER1, TER2, TER3 and TER4 

(Chen & Cheng, 2008; Tsaur et al., 2005).  

This method is based on a schema that describes the input and 

output relationships for a well established database. The 

induction is performed by the entropy minimization principle, 

which clusters most optimally the parameters corresponding to 

the output classes. By minimizing the entropy, we can find 

intervals in which the distribution of samples of any class is as 

relatively uniform as possible.   The steps of the Minimize 

Entropy Principle Approach (MEPA) are described below 

(Cheng et al, 2006; Chen & Cheng, 2008): 

Step 1: Determine the class of each data entry. 

In the Minimize Entropy Principle Approach, each data has to 

be assigned a class initially. There is no specific rule to determine 

the number of classes and the class of each data due to the 

characteristics of entropy. After doing some experiments, this 

paper assigned three classes to each data entry.  

 

Step 2: Calculate the threshold value (PRI, SEC1, SEC2, TER1, 

TER2, TER3, TER4).The entropy value of each data entry is 

computed by the entropy equation proposed by Christensen 

10 
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(1980) described above. The dataset must be sorted based on the 

value of each year. We must calculate the entropy values between 

every two adjacent data to obtain the minimal entropy value. By 

repeating this procedure to subdivide the data, the thresholds can 

be obtained. 

 

Step 3: Determine the length of intervals and build membership 

functions. 

Using the thresholds from Step 2 as the midpoint of the triangular 

fuzzy number, the membership function of Minimize Entropy 

Principle Approach can be established.  

 

Step 4: Fuzzify the historical data. 

     According to the membership function in Step 3, the 

membership degree of each data is calculated to determine its 

linguistic value.  

 
Fig 3: Partitioning process of Minimize Entropy Principle Approach 

 

 

 

 

 

 

 

 

 
 4. Fuzzy Linear Regression (FLR) Model  

Regression analysis is one of the common methods of parameters 

estimation. The classical regression method only provides a crisp 

estimation for parameters in economic models. However, there 

are numerous things which cause vague attributes in variables, 

coefficients, parameters and relations. Therefore, the use of a 

fuzzy estimation method can be helpful for understanding the 

vague nature of phenomena in the economic surveys. Like any 

regression technique, the objective of the fuzzy regression model 

is to determine a functional relationship between a dependent 
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variable and a set of independent variables. In fuzzy regression 

model, functional relationships can be obtained when the 

observations over independent variables, dependent variable, or 

both, are not only crisp values but also intervals or fuzzy 

numbers. 

In general, the fuzzy linear regression model can be described as 

(Wu, 2003; Kao & Chyu, 2003; Shapiro, 2005): 

 

mjUxAxAxAAAxfY ijkkjjj ,......,2,1,............),( 33221     (1) 

 

where, mjY j ,......,2,1,  , is the output observation j  that may 

be a non-fuzzy(crisp) or fuzzy observation, kixij ,....,2,1,   , 

11 jx  and mj ,...,2,1  is the model input which crisp. 

kiiA ,.....,2,1,  , are the fuzzy coefficients which can be defined 

in the form of asymmetric or non-asymmetric fuzzy numbers. 

Indeed, jU  is the fuzzy error associated with the regression 

model.  According to the output observations attribute, two types 

of fuzzy regression are identified as follows. 

In both types, the output is a fuzzy number but the inputs are 

crisp as before. Indeed, the coefficients of the model are fuzzy 

numbers continuously. In the first type, the fuzzy output is 

represented by a triangular fuzzy number in the form of 

symmetric ),( jjj eyY  , and, in the second type, the fuzzy output 

has the form of trapezoidal fuzzy number or LR-type 

mjeeyY R

j

L

jjj ,.....,2,1,),,(  . Both types and those membership 

functions are described in section 2. In this paper, I apply the LR-

type fuzzy regression. Eq.(1), for LR- type of the fuzzy 

coefficients and output can be written as below 

 

mjjxcca

xccaxccaccaeeyY

jjkj

R

k

L
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j

RL

j

RLRLR

j

L

jjj

,......2,1,),,(),,(...
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321

33332222111






 (2) 
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where, kiforcca R

i

L

ii ,....,2,1),,(   is the regression 

parameters in the form of  triangular fuzzy number. And 

),,(
321
 is the regression error term in the form of triangular 

fuzzy number. 

As stated earlier, in this paper we apply a fuzzy regression 

model based on the least squares approach that is supplied by 

Pierpalo D`Urso(2003). In this model, the dependent variable is a 

trapezoidal fuzzy number, but the explanatory variables are crisp. 

This fuzzy regression model in its structural form is, 

 

mjxaxaxaay
jkjkjjj

,......2,1,.........
133221

          (3) 

mjybde jj

L

j ,......2,1,. 2                          (4) 

mjyghe jj

R

j ,......2,1,. 3                             (5)  

 

Where, handgdb ,,  are regression parameters for 

;, RL ee equations. Other variables and parameters are introduced 

latter. This model has a recursive structure, which is an important 

type of simultaneous equations model. In this model, all the 

explanatory variables and 1  determine y  . y  is the predetermined 

variable with respect to Eqs.(3) and (4). Then y  determines 
Le and Re , with 2  and 3 , respectively. Recursive models are 

always exactly identified (Interligator,1978).  By incorporating y 

from Equ.(3) in  Eqs.(4-5) we have,  

              

mjxabxabxabdabe
jkjkjj

L

j
,......2,1,............).(

233221

*

       (6) 

             

.,......2,1,............).(
333221

mjxagxagxaghage
jkjkjj

R    (7) 

 

Eqs. (6-7) are the reduced form of the Eqs. (4-5), respectively.  

Incorporating Eqs. (6-7) to Equ (2) we have, 
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  (8)  

which is the reduced form of the Equ. (2). 

 
5. Specification of Data, Variables and model estimation 

As noted in previous sections, the purpose of the present paper is 

to estimate the fuzzy regression model based on the least squares 

approach for annual end-use energy intensity on its determinant 

factors for Iranian industrial activities. Here, the annual End-Use 

energy is equal to the annual sum of the consumed energy 

carriers’ quantities in MBOE37 measures by industrial groups. 

The energy carriers include oil derivatives, electricity and natural 

gas. Hence, the End-Use energy intensity is calculated as the total 

End-Use energy divided by the industrial real value-added (see 

Patterson 1996, Ang 1994 & Sun 2001 for details).  

According to the literature on the energy economic, there is a 

supposition that factors which can determine energy intensity 

consist of end-use energy cost, structural change in industrial 

activities, energy carriers’ combination in end-use energy bundles 

and technical efficiency progress (for instance, Boyd and Pang, 

2000, Ang 1994 & Farla et al 1998). Associated with these 

factors, we introduce, in the present study, explanatory variables 

such as the end-use energy average price, each sector’s share in 

industrial total value-added for the index of structural changes, 

the share of natural gas in total end-use carriers and technical 

efficiency score calculated by the DEA method38 for carriers 

combinations and technical change progress factors, respectively.  

In this study, industrial activities are classified into 9 main 

groups associated with ISIC. Our database consists of 225 pooled 

observations on response and explanatory variables within 9 

industry groups in the period1982-2006, which were collected 

from Iranian Statistical Center publications. All monetary values 

                                                 
37 Million Barrels of Oil Equivalents 

38 Data Envelopment Analysis  
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such as prices and value-added are deflated by an industrial price 

index based on 1999 constant prices.  

Let us point out again that the response variable is supposed 

to be a fuzzy time series which is scaled by linguistic indexes. In 

order to provide such indexes, we must first fuzzify the original 

observations on energy intensities by means of one of the two 

approaches introduced in section 3, that is, the Sang and Chisson 

method and Minimizing Entropy Principle Algorithm (MEPA). 

Because of high differences between industrial groups in terms of 

energy intensity, we prefer to use the second approach (MEPA) 

for fuzzifing the energy intensity time series observations. 

Applying this approach, we can make the LR-type fuzzy numbers 

for response variables. 

Based on Equ.(2) and the variables explained above, our 

fuzzy regression equation will be,  

 

25.,,.........2,1,9,......,2,1

)(),,()(),,(

)(),,()(),,(

),,())(),(),((

444333

222111

000
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it

RL
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it

   (2b). 

 

Based on Equs. 3-5, our selected recursive model for 

estimating the fuzzy regression (2b) can be rewritten as bellow:  

 

25.....,,.........2,1;9,........,2,1

)()(

)())1(()(

143

210







ti

effscorLogavaluadsLoga

enpricLogateninmedLogaaeninmedLog

iitit

ititit

 (3b) 

25.....,,.........2,1;9,........,2,1

)(..1)( 2





ti

eninmedLogbdspreleftLog iitit 
                              (4b)  

 

25.....,,.........2,1;9,........,2,1

)(..1)( 3





ti

eninmedLogghsprerightLog iitit 
                        (5b)  
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where, eninmed  is the med-point value of energy 

intensity(fuzzy number), spreleft and spreright are left and right 

spreads, eninmed(t-1) is the lagged value of eninmed,  Enpric, 

valuads and effiscor are the energy average price, industry sector 

value added share and efficiency score, respectively, i and t are 

the time and the industry sector subscripts and Log is the natural 

logarithm assignment.  

Equation 6b is one type of autoregressive regression model 

sets. We suppose that there is a long-run or desired path for the 

energy intensity variable which is determined by the explanatory 

variables: enpric, valuads and effscor. Therefore, Eq. 6b is a 

partial adjustment to the model. The distance between the 

observed (current) value of energy intensity and its desired value 

is called the error term. The energy intensity partially adapts to its 

long-run path in the short-run. The error term in this model would 

be modified by error correction phenomena.  

In the partial adjustment models, the lagged dependent 

variable is independent of the disturbance term, thus this model 

can be estimated with the OLS procedure. In Eq.3b, 11 a  is 

called the dynamic adjustment rate coefficient. Based on the 

partial adjustment model structure, in Eq.3b the explanatory 

variables coefficients are short-run model coefficients. Long-run 

model coefficients are obtained by dividing the short-run 

coefficient by the partial adjustment rate ( 11 a ). For example, 2a  

is the short-run price elasticity, whereas 
1

2

1 a

a


 is its long- run 

value (Chow, 1983).       

According to estimation rules for the recursive model 

mentioned above, in our model, Eq. (3b) could be estimated by 

the OLS technique. Then Eqs. (4b) and (5b) would be estimated 

by associated techniques such as 2SLS and 3SLS with 

instrumental variables which include the model predetermined 

variables: eninmed(t-1), Enpric , valuads and effiscor.  

 

 
7. Fuzzification of energy intensity data  
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In this section, we calculate the fuzzy values for the energy 

intensity observations based on the Minimizing Entropy Principle 

Algorithm (MEPA) introduced in section 3. The energy intensity 

database in this study includes 25 annual observations for each 

industrial group and, as a result, 225 pooled observations for all 

groups. The MEPA procedure, with an energy minimizing screen 

process, subdivides the energy intensity data with threshold 

values, which allows us to partition the dataset into a number of 

fuzzy sets with associated membership functions (Tsai, 2006).  

The number of the fuzzy sets depends on repeating screen 

processes. To determine the maximum partitions during the 

screen process repetition, we must calculate the entropy value of 

every potential threshold point by MEPA equations (in section 2-

3) until there is no extra partition process. With the application of 

the MEPA method, the attained maximum number of partitions 

for the energy intensity observations is seven. Hence, there are 7 

membership functions and 7 linguistic values for our respond 

variable too.  

Table (1) shows the calculated threshold points. These points 

can be used to construct the linguistic values and membership 

functions for the energy intensity variable that are represented in 

table (2) and figure (4), respectively. 

 
Table 1: Thresholds of MEPA 

Thresholds TER1 SEC1 TER2 PRI TER3 SEC2 

EC2 

TER4 

Value 0.62 1.30 1.89 2.45 2.87 5.75 7.00 

 

 

 

 

 

 

 

 

 
Table 2: Membership function of MEPA 
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Linguistic value Lower bound Midpoint Upper bound Length of 

interval 

L1 (very very 

low) 

0.33 0.62 1.30 0.97 

L2 (very low) 0.62 1.30 1.89 1.27 

L3 (low) 1.30 1.89 2.45 1.15 

L4 (moderate) 1.89 2.45 2.87 0.98 

L5 (high) 2.45 2.87 5.75 3.30 

L6 (very high) 2.87 5.75 7.00 4.13 

L7 (vey very 

high) 

5.75 7.00 13.70 7.95 

 
FIG 4: Membership function of MEPA for Energy Intensity 

 

 

 

 

 

 

 

 

 
8. Estimation results 

We use the software EVIEWS to estimate the recursive model as 

specified in Eqs. 3b-5b. Eq.3b is estimated by iterative WLS39 

whereas, because of the selected model structure, Eqs. 4b-5b are 

estimated by the 2SLS method. As noted above, our observations 

are pooled (panel) data, thus during the estimation we examined 

different effective procedures for panel data such as none, fixed 

and random effects. The fixed-effects model supplies the best 

results compared to others for Eq. 3b. Hence, the constant terms 

in equations have one estimated value for each of 9 industrial 

sectors.  Tables 3-4 report the short-run and long-run estimated 

results for Eq.(3b) and Eqs.4b-5b.  

                                                 
39 Weighted Least Square Estimator   
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Table 3: Estimation results for equation 3b.[The  response variable is 

iteninmedLog )( ]    The estimation method is WLS 

variable Short- run  

estimated coefficient 

Long- run estimated 

coefficient 

itteninmedLog ))1(( 
 

0.413 

(7.84 ) 

-------- 

itEnpricLog )(
 

-0.155 

(-6.26 ) 

-0.263 

itvaluadsLog )(
 

-0.105 

(-2.64 ) 

-0.178 

iteffiscorLog )(
 

-0.158 

(-2.93 ) 

-0.268 

Sector fixed effects terms 

[min to max] 

[ 1.65 - 3] [2.8 - 5] 

2R  
0.968 ------------ 

D.W statistics 1.9 --------------- 

 
Table 4: Estimation results for equation 4b and 5b.The estimation 

method is TSLS 
              

Equation and 

Respond variable 

Constant and  

Variable term 

Estimated coefficients 

 

 

Equation 

7b 

itspreleftLog )(
 

Constant ( d̂ ) 
[-0.97- -0.22] 

iteninmedLog )(
 

0.295 

(3.27) 
2R  

0.36 

D.W statistics 2.1 

 

Equation 

8b 

itsprerightLog )(
 

Constant ( ĥ ) 
[-0.4- 0.22] 

iteninmedLog )(
 

0.332 

(2.73) 
2R  

0.64 

D.W statistics 2.01 

 

The short-run and long-run coefficients for fuzzy regression 

Eq.2b can be calculated by the estimated results of the recursive 

model as shown in above tables. Table 5 reports the estimated 

coefficients of predetermined variables for Eq.2b. And so, the 

fuzzy fixed effects terms of Eq.2b are shown in table 6. 
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Table 5: Estimation results for equation 2b 
 ),ˆ,ˆ( 111

RL cca
 

),ˆ,ˆ( 222

RL cca
 

Short-run 

coefficients 

(0.413,0.122,0.137) (-.155,-.045,-.05) 

Long-run 

coefficients 

(0.703,0.207,0.233) (-.267,-.076,-.085) 

Table 5:continuation 
 ),ˆ,ˆ( 333

RL cca
 

),ˆ,ˆ( 444

RL cca
 

Short-run 

coefficients 

(-.105,-.03,-.03) (-.158,-.046,-.05) 

Long-run 

coefficients 

(-.179,-.05,-.05) ( -.27,-.07,-.09 ) 

Based on estimated results, we can explore the short-run and 

long-run membership functions for each fuzzy regression 

coefficient as specified in Eq. 2. This allows us to calculate 

two cut intervals under the membership functions associated 

with  quantity for each coefficient. Tables 7-8 show the 

trapezoidal fuzzy numbers for our model coefficients (Eq.2b) in 

selected cut  levels. The estimation results of fuzzy fixed effect 

coefficients are shown in table 6. As it is seen, higher fixed effect 

coefficients belong to the energy intensive industries such as 

chemical, mineral and metallic industries groups.   

 
Table 6: Estimation results of fuzzy  fixed effects terms for  

equation2b 
 

Industry sector 

Short-run 

)ˆ,ˆ,ˆ( 000

RL cca
 

Long-run 

)ˆ,ˆ,ˆ( 000

RL cca
 

Food industries ( 2.5 , 0 , 0.6 ) (4.25 ,0.28,1.2) 

Textile industries (2.2 ,0.09,0.5) (3.7 ,0.53,0.54) 

 Wood industries ( 2 , 0 ,  0.47 ) (3.4 ,0.22,0.93) 

 Paper and press industries (2.2 , 0 , 0.11) (3.7 , 0.30 ,0.6) 

Chemical industries  (2.4 , 0 , 0.37) (4.08 ,0.4 ,0.92) 

 Non-metal Mineral industries. ( 3 , 0.66 , 2 ) (5.1 ,1.28 ,0.63) 

 Main metallic industries  (2.8 , 1 , 1.18) (4.77,0.97,1.78) 

 Machinery and Equipment 

industries  

(1.98 , 0, 0.32) (3.37,0.08,0.78) 

Other industries (1.65 , 0 ,0.15) (2.81,0.11,0.53) 
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Table 7: cut
s intervals of the short-run estimated coefficients for 

equation 2b 
 

iâ
 

 

j
 

1â  2â  
Lower 

bound 

Med 

point 

Upper 

bound 

Lower 

bound 

Med 

point 

Upper 

bound 

01   
0.291 0.413 0.55 -.195 -

.155 

-.105 

25.02   
0.322 

 

0.413 0.516 -.189 -

.155 

-.118 

5.03 
 

0.352 0.413 0.482 -.178 -

.155 

-.130 

75.04   
0.383 0.413 0.447 -.166 -

.155 

-.143 

9.05 
 

0.40 0.413 0.427 -.159 -

.155 

-.150 

 

 
Table 7:continuation 

 

iâ
 

 

j
 

3â
 4â  

Lower 

bound 

Med 

point 

Upper 

bound 

Lower 

bound 

Med 

point 

Upper 

bound 

01   
-.135 -

.105 

-.075 -.204 -

.158 

-.108 

25.02   
-.128 -

.105 

-.083 -.192 -

.158 

-.121 

5.03 
 

-.120 -

.105 

-.09 -.181 -

.158 

-.133 

75.04   
-.133 -

.105 

-.098 -.169 -

.158 

-.146 

9.05 
 

-.108 -

.105 

-.102 -.162 -

.158 

-.153 
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Table 8: cut
s intervals of the long-run estimated coefficients for 

equation 2b 
 

   iâ
 

 

j
 

1â  2â  

Lower 

bound 

Med 

point 

Upper 

bound 

Lower 

bound 

Med 

point 

Upper 

bound 

01   
------- ------ ------- -0.34 -.264 -.179 

25.02   
------- ------ ------- -.321 -.264 -0.2 

5.03 
 

------- ------ ------- -.302 -.264 -.222 

75.04   
------- ------ ------- -.283 -.264 -.242 

9.05 
 

------- ------ ------- -.272 -.264 -0.26 

 
Table 8:continuation 

 

   iâ
 

 

j
 

3â
 4â  

Lower 

bound 

Med 

point 

Upper 

bound 

Lower 

bound 

Med 

point 

Upper 

bound 

01   
-.229 -.179 -.129 -0.34 -0.27 -0.18 

25.02   
-.216 -.179 -.141 -0.32 -0.27 -0.2 

5.03 
 

-.204 -.179 -.154 -.305 -0.27 -.225 

75.04   
-.191 -.179 -.167 -.287 -0.27 -0.25 

9.05 
 

-.184 -.179 -.174 -.277 -0.27 -0.26 

 

9. Summary and Conclusions  

Compared to developed countries, energy intensity in the Iranian 

economy is very high. According to an IEA40 report, energy 

intensity based on exchange rates in Iran was almost 7 times as 

much as that of OECD, 6.8 times that of U.S, 14.7 times that of 

Japan and 3.5 times that of Turkey. The gradual price increases 

during the Iranian development programs have to be regarded as 

an important government effort for managing the energy demand 

                                                 
40 International Energy Agency 
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side. For example, observations on the average real price of 

energy carriers reveal an increasing trend especially after 1968.              

Iranian industrial sectors consume about 20 percent of the 

total End-use energy. In 2001-08, the industrial end-use energy in 

the Iranian economy grew nearly 9% annually. In this study, 

industrial energy intensity is computed as end-use energy divided 

by real value added based on the 1990 constant price. Our 

computations show that industrial energy intensity has had a 

moderate declining trend after 1968 or at the beginning of the 

first development plan.      

Energy intensity attitude can be affected by many factors. 

These factors can be autocorrelation behavior, relative technical 

efficiency changes, structural changes and energy carriers’ price 

factors. Therefore the end-use energy changes in the production 

process are decomposed into three effects: energy pure intensity 

effect41, structural changes effect42 and production growth 

effect43. The autocorrelation factor is an index of the integrated 

based factors which can be determined by the main pattern of  

End-Use energy in economic activities. In this paper, these 

factors were explained by lagged energy intensity. 

Technical changes indicate improvements in the inputs’ 

combination required for achieving the frontier production 

function. In this study, technical changes were indexed by yearly 

efficiency scores computed based on data envelopment analysis 

(DEA) method during the surveyed period. The DEA method 

allocated relative efficiency scores to decision making units 

(DMUs). Each year in the studied period was taken as a DMU. In 

other words, the efficiency score for each year was computed as a 

percentage of the “best practice”. Obviously, it is expected that a 

                                                 
41 Pure energy intensity is a part of energy intensity which independent of the activity 

level and production structure 
42 Structural changes effect  is a part of energy  end-use changes  which depended to 

the firm value added share in industry.   
43 Production growth effect  is a part of energy intensity which depended to the firm 

production growth. 
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relative improvement in technical efficiency raises the End-Use 

energy productivity. 

In this paper, analyses and observations were based on a 

partial adjustment model. The fundamental assumption in this 

model was the current value of the respond variable approaches 

its long-term value or its desired value. The long-term value was 

determined by a functional relationship between the respond 

variable and explanatory variables. An important coefficient in 

this model was the dynamic adjustment rate which explains the 

proportion of the speed of the short-run energy intensity motion 

to its long-run trend. In other words, this rate is equal to the 

current value of energy intensity divided by its desired value.                                             

The estimation of the fuzzy regression model for the Iranian 

industrial sector shows that the lagged energy intensity variable is 

the only factor which has had a positive effect on the industrial 

energy intensity attitude. The lagged energy intensity coefficient 

has a trapezoidal fuzzy number equal to 0.413, 0.122 and 0.137. 

On the other hand, other explanatory variables, including energy 

price, value added share and technical efficiency scores, have had 

a negative effect on the energy intensity trend in the period 

(1982-2006).  

The fuzzy dynamic adjustment rate has a trapezoidal value 

equal to (0.587, 0.122, 0.137). This means that the observed 

energy intensity would be varieties in [0.465-0.724] around its 

desired value. The price elasticity of energy intensity has a fuzzy 

number equal to (-0.155,-0.045, -0.05) in the short-run and (-

0.264 , -0.076 , -0.083) in the long-run. These indicate that 

energy intensity is price inelastic, thus the energy pricing policies 

have had a low effect on the end-use energy behavior in the 

industrial activities in our studied period.  

The estimated value added share coefficient shows that 

increasing the relative scale of industry activity helps improve 

energy productivity. This means that the larger groups have been 

higher energy savers. The value added share coefficient attains 

the fuzzy number (-0.105, -0.03 , -0.03) in the short-run and (-

0.179 , -0.05 , -0.05) in the long-run. Infact the estimated fuzzy 
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coefficient of the efficiency score indicates that technical 

efficiency changes in industrial groups have had a modifying 

effect on the energy intensity behavior in the surveyed period. 

Results reveal that the energy pure intensity was the main 

factor explaining the end-use energy changes in the Iranian 

industrial sector. This means that high energy intensity in this 

sector is mainly due to low productivity of employing energy 

carriers and so there is much potential for energy saving in the 

Iranian industrial sector which mainly emerges from pure energy 

intensity in the short-run. Moreover, the results reveal that all of 

the explanatory, such as energy price, value added share and 

relative efficiency variables, have had a negative effect on the 

energy efficiency. In fact, according to the estimated value of the 

dynamic adjustment rate parameters, this negative effect has 

almost doubled in the long run compared to short run. 

In sum, based on the model estimation results, it is 

recommended to improve price and technical policies for 

moderating end-use energy intensities, although this effectiveness 

was not rich enough in the study period. Indeed, the estimated 

domain of the gap between actual and desired states of energy 

intensity is about (0.54-0.26), which shows that the energy 

supply management system in Iranian economic should make 

more effort to modify, redesign and execute the price and non-

price policies.                      
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APPENDIX 1:  Estimation Results of Eq 3b 
                

Method: Pooled EGLS (Cross-section weights)  

Date: 10/10/09   Time: 00:21   

Sample: 1362 1385   

Included observations: 24   

Total panel (balanced) observations 216  

White Heteroskedasticity-Consistent Standard Errors & Covariance 

     
     Variable Coefficient Std. Error t-Statistic Prob. 

     
     LOG(INTFUZ?(-1)) 0.413559 0.052745 7.840679 0.0000 

LOG(ENPRIC?) -0.155478 0.024814 -6.265649 0.0000 

LOG(VALUDR?/VALUDR

TOT) -0.105071 0.039739 -2.644006 0.0088 

LOG(EFFIC?) -0.157928 0.053813 -2.934772 0.0037 

Fixed Effects (Cross)     

_S31--C 2.487969    

_S32--C 2.236914    

_S33--C 2.081433    

_S34--C 2.243700    

_S35--C 2.461819    

_S36--C 3.046376    

_S37--C 2.788599    

_S38--C 1.981767    

_S39--C 1.659993    

     
      Effects Specification   

     
     Cross-section fixed (dummy variables)  

     
      Weighted Statistics   

     
     R-squared 0.968390 Mean dependent var 1.215091 

Adjusted R-squared 0.966522     S.D. dependent var 1.442237 

S.E. of regression 0.263888     Sum squared resid 14.13626 

Log likelihood 51.08571     F-statistic 2073.014 

Durbin-Watson stat 1.883090     Prob(F-statistic) 0.000000 
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APPENDIX 2:  Estimation Results of Eq 4b 
ystem: SYSFUZZYRIGHTNEW   

Estimation Method: Iterative Weighted Two-Stage Least Squares 

Date: 10/10/09   Time: 01:51   

Sample: 1362 1385   

Simultaneous weighting matrix & coefficient iteration 

Convergence achieved after: 19 weight matricies, 20 total coef iterations 

     
      Coefficient Std. Error t-Statistic Prob.   

     
     C(331) -0.221769 0.257615 -0.860855 0.3903 

C(333) 0.332497 0.121353 2.739911 0.0067 

C(1) 0.524802 0.054303 9.664383 0.0000 

C(332) -0.682785 0.061598 -11.08450 0.0000 

C(313) -0.192267 0.220319 -0.872675 0.3839 

C(334) -0.623515 0.318382 -1.958387 0.0515 

C(335) -0.422379 0.296445 -1.424814 0.1557 

C(336) 1.060422 0.313409 3.383511 0.0009 

C(337) 0.268833 0.335443 0.801425 0.4238 

C(338) -0.339461 0.185095 -1.833981 0.0681 

C(339) -0.393170 0.156162 -2.517715 0.0126 

     
     Determinant residual covariance 2.79E-08   

     
          

Equation: LOG(INTFUZZR) = C(331) + C(333)*LOG(INTFUZ) 

        +[AR(1)=C(1)]    

Observations: 24   

R-squared 0.638807     Mean dependent var 0.086845 

Adjusted R-squared 0.604407     S.D. dependent var 0.918698 

S.E. of regression 0.577826     Sum squared resid 7.011539 

Durbin-Watson stat 0.908672    
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APPENDIX 3: Estimation Results of Eq 5b 

System: SYSFUZZILEFTNEW   

Estimation Method: Iterative Weighted Two-Stage Least Squares 

Date: 10/10/09   Time: 01:50   

Sample: 1362 1385   

Sequential weighting matrix & coefficient iteration 

Convergence achieved after: 14 weight matricies, 47 total coef iterations 

     
      Coefficient Std. Error t-Statistic Prob.   

     
     C(111) -0.972032 0.096806 -10.04101 0.0000 

C(222) 0.295707 0.090159 3.279823 0.0012 

C(1) 0.369417 0.059441 6.214892 0.0000 

C(112) -0.568909 0.055919 -10.17383 0.0000 

C(113) -0.785969 0.222000 -3.540409 0.0005 

C(114) -0.779095 0.094077 -8.281503 0.0000 

C(115) -0.766821 0.182870 -4.193251 0.0000 

C(116) -0.225267 0.194590 -1.157649 0.2484 

C(117) -0.431765 0.274355 -1.573747 0.1171 

C(118) -0.913412 0.077511 -11.78435 0.0000 

C(119) -0.718546 0.102477 -7.011782 0.0000 

     
     Determinant residual covariance 4.60E-11   

     
          

Equation: LOG(INTFUZL) = C(111) + C(222)*LOG(INTFUZ) 

        +[AR(1)=C(1)]    

Observations: 24   

R-squared -0.009598     Mean dependent var -0.698626 

Adjusted R-squared -0.105750     S.D. dependent var 0.159884 

S.E. of regression 0.168125     Sum squared resid 0.593586 

Durbin-Watson stat 0.394540    
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