مطالعه وضعیت تراز تجاری رد پای کربن بخش‌های اقتصادی در ایران با رهیافت ماتریس حسابداری اجتماعی(SAM)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 هیات علمی دانشگاه تبریز

2 دانشجوی دکتری اقتصاد دانشگاه تبریز

چکیده

در چند دهه اخیر انتشار بیشتر آلاینده‌های کربن ناشی از مصرف انرژی، اثرات مخرب بیشتری بر محیط زیست گذاشته است. سهم برخی صنایع و بخش‌های تولیدی نسبت به سایر بخش‌ها بیشتر بوده و از کشوری به کشور دیگر ممکن است متفاوت باشد. برخی کشورها با انتقال صنایع آلاینده به کشورهای دیگر جنگ کربن را شروع نموده‌اند. این در حالی است که هر کشور با توجه به موقعیت زیستی اش ظرفیتی در جذب آلاینده‌ها دارد. اگر رد پای کربن بیشتر از این ظرفیت باشد اثرات مخرب بر محیط زیست پیرامون وارد می‌شود. از اینرو کشورها سعی در صادرات کالاهایی دارند که کربن کمتری انتشار دهد و از تولید مازاد کالاهایی که انتشار کربن بالایی دارد می‌پرهیزند از اینرو تمایل دارند کالاهای آلاینده را بیشتر وارد نمایند به طوریکه تراز تجاری رد پای کربن آن کالا منفی شود. در این پژوهش تراز تجاری رد پای کربن 86 بخش اقتصادی با استفاده از روش ماتریس حسابداری اجتماعی سال 1390 مورد مطالعه قرار گرفته است. نتایج حاکی از این است که کل تراز تجاری رد پای کربن کشور منفی 4.5 تن است که این تراز منفی نسبت ناچیزی از کل رد پای کربن بخش‌های اقتصادی است. بخشهای نفت، توزیع گاز طبیعی، ساخت مواد شیمیایی و محصولات شیمیایی، حمل و نقل جاده‌ای به ترتیب بیشترین تراز تجاری رد پای کربن مثبت و بخش‌های ساخت محصولات غذایی، ساخت وسایل نقلیه موتوری، تریلر و نیم تریلر، ساخت فلزات اساسی به ترتیب منفی ترین تراز تجاری کربن دارند.

کلیدواژه‌ها


عنوان مقاله [English]

Study of the carbon footprint trade balance in Iran's economic sectors whit in the social accounting matrix(SAM) approach

چکیده [English]

In recent decades, releasing more carbon emissions resulting from energy consumption, more damaging effects on the environment is set up.Some of the Industries and manufacturing sectors share some sectors more than others, and from one country to another countries may vary. Some countries have started the carbon war by transfer of polluting industries to other countries. However, each country according to its biological status has a capacity to absorb pollutants. If carbon footprint is higher than the absorb capacity potential harmful effects on the environment is entered. In this paper, economic sectors carbon footprint trade balance by using Social Accounting Matrix 1390 is studied. Results indicate that in 1390, the negative trade balance of the country's carbon footprint is 4.5 tonnes. That is only 8-thousandth of the total economic sectors's carbon footprint. Sector of oil, natural gas distribution, manufacture of chemicals and chemical products, transport have a highest positive carbon footprint trade balance and food products, manufacture of motor vehicles, trailers and semi-trailers, manufacture of basic metals have the most negative The carbon trade balance.

کلیدواژه‌ها [English]

  • Sustainable Development
  • carbon footprint trade balance
  • social accounting matrix and economic sectors

بانویی، علی اصغر و سیمین عزیزمحمدی. (1392). سنجش ردپای بوم شناختی زمین در بخش‌های مختلف اقتصادی ایران با استفاده از رویکرد جدول داده- ستانده، فصلنامه سیاست گذاری پیشرفت اقتصادی، شماره 1، صص 66-35.## تراز نامه انرژی. (1390). ترازنامه انرژی سال 1390، وزارت نیرو. ##مرکز پژوهش‌های مجلس. (1394). بهنگام سازی جدول داده‑ ‌ستاتده و ماتریس حسابداری اجتماعی و طراحی الگوی CGE و کاربردهای آنها در سیاستگذاری اقتصادی – اجتماعی. دفتر مطالعات اقتصادی، شماره مسلسل 12453. ##مرکز پژوهش‌های مجلس. دفتر مطالعات اقتصادی. (1394). گزارش پایه‌های آماری ماتریس حسابداری اجتماعی سال 1390 مرکز پژوهش­های مجلس (بهار 1394). ##

Bicknell, K. B., R. J. Ball, R. Cullen & H.R. Bigsby. (1998). New Methodology for the Ecological Footprint with an Application to the New Zealand Economy. Ecological Economics 27: 149-160. ‌‌‌ ##BP. (2007). What is a Carbon Footprint?, Internet Site: http://www.bp.com/liveassets/bp_internet/globalbp/STAGING/global_assets/downloads/A/ABP_ADV_what_on_earth_is_a_carbon_footprint.pdf##Bullard, C.W., P.S. Penner & D.A. Pilati. (1978). Net Energy Analysis: Handbook for Combining Process and Input-Output Analysis. Resources and Energy 1(3): 267-313. http://dx.doi.org/10.1016/0165-0572(78)90008-7. ##Carbon Trust. (2007). Carbon Footprint Measurement Methodology, Version 1.1. 27 February 2007, The Carbon Trust, London, UK. http://www.carbontrust.co.uk. ##DEFRA. (2007). Step Forward on Reducing Climate Change Impacts from Products. DEFRA press release, 30 May 2007, from http://www.defra.gov.uk/news/2007/ 070530a.htm. ##Eckel, A. (2007). The Reality of Carbon Neutrality Energetics London, Gravure 21(2): 35-36. www.energetics.com.au/file?node_id=21228Energetics 2007. The Reality of Carbon Neutrality, London. www.energetics.com.au/file?node_id=2 1228##ETAP. (2007). The Carbon Trust Helps UK Businesses Reduce their Environmental Impact, Press Release, http://ec.europa.eu/environment/etap/pdfs/jan07_carbon_trust _initiative.pdf##Ferng, J. (2001). Using Composition of Land Multiplier to Estimate Ecological Footprints Associated with Production Activity. Ecological Economics No 37: 159–172. ##Foran, B., M. Lenzen & C. Dey. (2005). Balancing Act: A Triple Bottom Line Analysis of the 135 Sectors of the Australian Economy. CSIRO Resource Futures and The University of Sydney, Canberra, ACT, Australia. www.cse.csiro.au/research/ balancingact##Grub & Ellis. (2007). Meeting the Carbon Challenge: The Role of Commercial Real Estate Owners, Users & Managers, Chicago. ##Hammond, G. (2007). Time to Give Due Weight to the 'Carbon Footprint' Issue. Nature 445(7125): 256. http://dx.doi.org/10.1038/445256b. ##Haven, J. (2007). A Definition of ‘Carbon Footprint, Environment Business 129: 27. ##Heijungs, R. & S. Suh. (2002). The Computational Structure of life Cycle Assessment. Kluwer Academic Publishers, Dordrecht, The Netherlands. ##Hubacek, K., D.Guan, J. Barrett ‌‌‌& T. Wiedmann. (2009). ‌‌‌ Environmental Implications of Urbanization and Lifestyle Change in China: Ecological and Water Footprints. ‌‌‌ Journal of Cleaner Production 17: 1241–1248. ‌‌‌##Jacobsen, R., V. Vandermeulen, G. Vanhuylenbroeck & X. Gellynck. (2014). A Life Cycle Assessment Application: The Carbon Footprint of Beef in Flanders (Belgium), Assessment of Carbon Footprint in Different Industrial Sectors, Vol. 2, Edited by  Subramanian Senthilkannan Muthu, Springer. ##Lenzen, M. &  S.A. Murray. (2001). A Modified Ecological Footprint Method and Its Application to Australi. Ecological Economics No 37.PP: 229–255. ##Lenzen, M. & S.A. Murray.) 2003(. The Ecological Footprint-Issues and Trends. ISA Research Paper 01-03. The University of Sydney. ##Lenzen, M. (2001). Errors in Conventional and Input- Output-based Life-Cycle Inventories. Journal of Industrial Ecology 4(4): 127-148. http://dx.doi.org/10.1162/10881980052541981. ##Mattila, T., J. Judl & J. Seppälä. (2014). Carbon Footprint of Mobile  Devices: Open Questions in Carbon Footprinting of Emerging Mobile ICT Technologies, Assessment of Carbon Footprint in Different Industrial Sectors, Assessment of Carbon Footprint in Different Industrial Sectors, Vol. 1, Edited by Subramanian Senthilkannan Muthu, Springer. ##Nakamura, Sh. & Y. Kondo. (2009). Waste Input-Output Analysis, Eco-EfficIency in Industry and Science, vol.6 , Springer. ##Pandey, D. & M. Agrawal. (2014). Carbon Footprint Estimation in the Agriculture Sector, Assessment of Carbon Footprint in Different Industrial Sectors, Vol. 1, Edited by Subramanian Senthilkannan Muthu , Springer. ##Patel, J. (2006). Green Sky Thinking. Environment Business (122): 32. ##Patz Jonathan A., Diarmid Campbell-Lendrum, Tracey Holloway & Jonathan A. Foley. (2005). Impact of Regional Climate Change on Human Health, Nature, Vol 438|17 November 2005| doi: 10.1038/ nature 04188. ##POST. (2006). Carbon Footprint of Electricity Generation. POSTnote 268, October 2006, Parliamentary Office of Science and Technology, London, UK. http://www.parliament.uk/documents/upload/postp n268.pdf. ##Quinteiro, P., M. Almeida, A. Cláudia Dias, A. Araújo & L. Arroja. (2014). The Carbon Footprint of Ceramic Products, Assessment of Carbon Footprint in Different Industrial Sectors, Edited by Subramanian Senthilkannan Muthu, Vol. 1, Springer. ##Röös, E., C. Sundberg & P. A. Hansson. (2014). Carbon Footprint of  Food Products, Assessment of Carbon Footprint in Different Industrial Sectors, Vol. 1, Edited by Subramanian Senthilkannan Muthu, Springer. ##Santa Barbra. (2011). County Air Pollution Control District status of Santa Barbara, County Air Quality and Air Pollution Control District (APCD) ,2011##Sanyé-Mengual, E., R.G. Lozano, J. Oliver-Solà, C.M. Gasol & J. Rieradevall. (2014). Eco-Design and Product Carbon Footprint Use in the Packaging Sector, Assessment of Carbon Footprint in Different Industrial Sectors, Vol. 1, Edited by Subramanian Senthilkannan Muthu, Springer. ##Sanyé-Mengual, E., R.G. Lozano, R. Farreny, J. Oliver-Solà, C.M. Gasol & J. Rieradevall. (2014). Introduction to the Eco-Design Methodology and the Role of Product Carbon Footprint, Assessment of Carbon Footprint in Different Industrial Sectors, Vol. 1, Edited by Subramanian Senthilkannan Muthu, Springer. ##Sei, Wwf & Cure. (2006). Counting Consumption - CO2 emissions, material flows and Ecological Footprint of the UK by region and devolved country. Published by WWF-UK, Godalming, Surrey, UK, 2006. http://www.ecological budget.org.uk. ##Solís-Guzmán, J., A. Martínez-Rocamora & M. Marrero. (2014). Methodology for Determining the Carbon Footprint of the Construction of Residential Buildings, Assessment of Carbon Footprint in Different Industrial Sectors, Edited by Subramanian Senthilkannan Muthu, Vol. 1, Springer. ##Suh, S., M. Lenzen, G.J. Treloar, H. Hondo, A. Horvath, G. Huppes, O. Jolliet, U. Klann, W. Krewitt, Y. Moriguchi, J. Munksgaard &  G. Norris. (2004). System boundary selection in life-cycle inventories using hybrid approaches. Environmental Science &Technology 38(3): 657-664. ##Teng, J. ‌‌‌& X. Wu. (2014). ‌Eco-Footprint-Based Life-Cycle Eco-Efficiency Assessmentof Building Projects. ‌‌‌ Ecological Indicators 39: 160 – 168. ‌‌‌##Varun & Manish Kumar Chauhan. (2014). Carbon Footprint and Energy Estimation of the Sugar Industry: An Indian Case Study, Assessment of Carbon Footprint in Different Industrial Sectors, Vol. 2, Edited by Subramanian Senthilkannan Muthu, Springer. ##Vázquez-Rowe, I., P. Villanueva-Rey, M.T. Moreira & G. Feijoo. (2014). A Review of Energy Use and Greenhouse Gas Emissions from Worldwide Hake Fishing, Assessment of Carbon Footprint in Different Industrial Sectors, Vol. 2, Edited by Subramanian Senthilkannan Muthu, Springer. ##Wackernagel M. & W. Rees. (1996). Our ecological footprint: reducing human impact on the earth. New Society Publishers, Gabriola Island, B. C., Canada. ##Wackernagel, M. ‌‌‌ (1994). ‌‌‌ Ecological Footprint and Appropriated Carrying Capacity: A Tool for Planning Toward Sustainability. ‌‌‌ PhD thesis. ‌‌‌ Vancouver, Canada: School of Community and Regional Planning. ‌‌‌ The University of British Columbia. ‌‌‌ OCLC 41839429. ‌‌‌##Wei, X.‌‌Y. ‌‌‌&  J.‌‌‌X. Xia. ‌‌‌ (2012). ‌‌‌ Ecological Compensation for Large Water Projects Based on Ecological Footprint TheoryFa Case Study in China. ‌‌‌ Procedia Environmental Sciences, 13: 1338-1345. ‌‌##Wiedmann, T., Barrett, J. & M. Lenzen. (2007). Companies on the Scale- Comparing and Benchmarking the Footprints of Businesses. International Ecological Footprint Conference, May 8-10, 2007, Cardiff, UK. http://www.brass.cf.ac.uk/uploads/Wiedmann_et_al_P36.pdf; http://www.isaresearch.co.uk/docs/ Wiedmann_et_al_2007_Cardiff_Companies_EF.pdf. ##Wiedmann, T., J. Minx, J. Barrett & M. Wackernage. (2005). Allocating Ecological Footprints to Final Consumption Categories With Input–Output Analysis, Ecological Economics, 56: 28– 48. ##Zhao, R., X. Chuai, X. Huang, L. Lai & J. Peng. (2014). Carbon Emission and Carbon Footprint of Different Industrial Spaces in Different Regions of China, Assessment of Carbon Footprint in Different Industrial Sectors, Vol. 1, Edited by Subramanian Senthilkannan Muthu, Springer. ##